scholarly journals The 750 GeV diphoton excess in unified SU(2)L ×SU(2)R ×SU(4) models from noncommutative geometry

2016 ◽  
Vol 31 (18) ◽  
pp. 1650101 ◽  
Author(s):  
Ufuk Aydemir ◽  
Djordje Minic ◽  
Chen Sun ◽  
Tatsu Takeuchi

We discuss a possible interpretation of the 750 GeV diphoton resonance, recently reported at the large hadron collider (LHC), within a class of [Formula: see text] models with gauge coupling unification. The unification is imposed by the underlying noncommutative geometry (NCG), which in these models is extended to a left–right symmetric completion of the Standard Model (SM). Within such unified [Formula: see text] models the Higgs content is restrictively determined from the underlying NCG, instead of being arbitrarily selected. We show that the observed cross-sections involving the 750 GeV diphoton resonance could be realized through a SM singlet scalar field accompanied by colored scalars, present in these unified models. In view of this result, we discuss the underlying rigidity of these models in the NCG framework and the wider implications of the NCG approach for physics beyond the SM.

2018 ◽  
Vol 172 ◽  
pp. 06002
Author(s):  
Cristian Baldenegro

One of the main goals of the Large Hadron Collider is to find signatures of physics Beyond the Standard Model of particle physics. One way to do this is by studying with high precision the interactions of the Standard Model. In this talk, we address the discovery potential of New Physics in the exclusive channel pp → p X p which relies on the general purpose detectors at the Large Hadron Collider and their respective forward proton detector stations, located at about ~ 210 m w.r.t. the interaction point. These reactions are highly sensitive to quartic electroweak gauge interactions. As a proof of concept, we discuss the exclusive diphoton production at high diphoton invariant mass. We quote sensitivities on the anomalous γγγγ coupling for an integrated luminosity of 300 fb1 at the center-of-mass energy of 14 TeV.We also discuss the discovery potential of 3γZ anomalous quartic gauge coupling by measuring the pp → p(γγ → Zγ)p reaction.


2013 ◽  
Vol 28 (20) ◽  
pp. 1350101
Author(s):  
XIANGDONG GAO ◽  
QIANG LI ◽  
CAI-DIAN LÜ

We report calculations of the gluon-induced Zg and Zgg productions in the Standard Model at the Large Hadron Collider (LHC) operating at both 7 TeV and 14 TeV collision energies. We present total cross-sections and differential distributions of the processes and compare them with the leading and next-to-leading order QCD pp → Z+1 jet, Z+2 jets results. Our results show that the gluon-induced Zg and Zgg productions contribute to pp → Z+1 jet, Z+2 jets at 1% level.


2008 ◽  
Vol 23 (32) ◽  
pp. 5117-5136 ◽  
Author(s):  
MONICA PEPE ALTARELLI ◽  
FREDERIC TEUBERT

LHCb is a dedicated detector for b physics at the LHC (Large Hadron Collider). In this paper we present a concise review of the detector design and performance together with the main physics goals and their relevance for a precise test of the Standard Model and search of New Physics beyond it.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Isabell Engeln ◽  
Pedro Ferreira ◽  
M. Margarete Mühlleitner ◽  
Rui Santos ◽  
Jonas Wittbrodt

Abstract We discuss the dark phases of the Next-to-2-Higgs Doublet model. The model is an extension of the Standard Model with an extra doublet and an extra singlet that has four distinct CP-conserving phases, three of which provide dark matter candidates. We discuss in detail the vacuum structure of the different phases and the issue of stability at tree-level of each phase. Taking into account the most relevant experimental and theoretical constraints, we found that there are combinations of measurements at the Large Hadron Collider that could single out a specific phase. The measurement of h125 → γγ together with the discovery of a new scalar with specific rates to τ+τ− or γγ could exclude some phases and point to a specific phase.


2009 ◽  
Vol 24 (01) ◽  
pp. 1-15 ◽  
Author(s):  
GUSTAAF BROOIJMANS

Experiments will soon start taking data at CERN's Large Hadron Collider (LHC) with high expectations for discovery of new physics phenomena. Indeed, the LHC's unprecedented center-of-mass energy will allow the experiments to probe an energy regime where the standard model is known to break down. Here, the experiments' capability to observe new resonances in various channels is reviewed.


Author(s):  
Martino Borsato ◽  
Xabier Cid-Vidal ◽  
Yuhsin Tsai ◽  
Carlos Vázquez Sierra ◽  
Jose Francisco Zurita ◽  
...  

Abstract In this paper, we describe the potential of the LHCb experiment to detect Stealth physics. This refers to dynamics beyond the Standard Model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850024 ◽  
Author(s):  
Ernest Ma ◽  
Diego Restrepo ◽  
Óscar Zapata

The well-known leptonic U(1) symmetry of the Standard Model (SM) of quarks and leptons is extended to include a number of new fermions and scalars. The resulting theory has an invisible QCD axion (thereby solving the strong CP problem), a candidate for weak-scale dark matter (DM), as well as radiative neutrino masses. A possible key connection is a color-triplet scalar, which may be produced and detected at the Large Hadron Collider.


2020 ◽  
Vol 18 ◽  
pp. 110-142
Author(s):  
Abdeljalil Habjia

In the context of particle physics, within the ATLAS and CMS experiments at large hadron collider (LHC), this work presents the discussion of the discovery of a particle compatible with the Higgs boson by the combination of several decay channels, with a mass of the order of 125.5 GeV. With increased statistics, that is the full set of data collected by the ATLAS and CMS experiments at LHC ( s1/2 = 7GeV and s1/2 = 8GeV ), the particle is also discovered individually in the channel h-->γγ with an observed significance of 5.2σ and 4.7σ, respectively. The analysis dedicated to the measurement of the mass mh and signal strength μ which is defined as the ratio of σ(pp --> h) X Br(h-->X) normalized to its Standard Model where X = WW*; ZZ*; γγ ; gg; ff. The combined results in h-->γγ channel gave the measurements: mh = 125:36 ± 0:37Gev, (μ = 1:17 ± 0:3) and the constraint on the width Γ(h) of the Higgs decay of 4.07 MeV at 95%CL. The spin study rejects the hypothesis of spin 2 at 99 %CL. The odd parity (spin parity 0- state) is excluded at more than 98%CL. Within the theoretical and experimental uncertainties accessible at the time of the analysis, all results: channels showing the excess with respect to the background-only hypothesis, measured mass and signal strength, couplings, quantum numbers (JPC), production modes, total and differential cross-sections, are compatible with the Standard Model Higgs boson at 95%CL. Although the Standard Model is one of the theories that have experienced the greatest number of successes to date, it is imperfect. The inability of this model to describe certain phenomena seems to suggest that it is only an approximation of a more general theory. Models beyond the Standard Model, such as 2HDM, MSSM or NMSSM, can compensate some of its limitations and postulate the existence of additional Higgs bosons.


Sign in / Sign up

Export Citation Format

Share Document