Correction to the tunneling radiation of arbitrary spin fermions in Kerr Anti-de Sitter black hole

2019 ◽  
Vol 35 (09) ◽  
pp. 2050055 ◽  
Author(s):  
Zhie Liu ◽  
Xia Tan ◽  
Bei Sha ◽  
Yuzhen Liu ◽  
Jie Zhang

According to the dispersion relation that stems from the string theory and the quantum gravitational theory, we study the dynamic equation of fermions, that is Rarita–Schwinger equation. Based on the Lorentz dispersion relation modified in the high-energy case, the dynamic equation of arbitrary spin fermions is accurately corrected in the Kerr Anti-de Sitter black hole, then the action of fermions with arbitrary spin is computed. To do so, we obtain the new expressions for tunneling rate, Hawking temperature and entropy of the black hole. At last, some comments are made on the results of our work.

2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Bei Sha ◽  
Zhi-E Liu ◽  
Xia Tan ◽  
Yu-Zhen Liu ◽  
Jie Zhang

The quantum tunneling radiation of fermions with arbitrary spin at the event horizon of Kerr-de Sitter black hole is accurately modified by using the dispersion relation proposed in the study of string theory and quantum gravitational theory. The derived tunneling rate and temperature at the black hole horizons are analyzed and studied.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050168
Author(s):  
Xia Tan ◽  
Yuzhen Liu ◽  
Zhie Liu ◽  
Bei Sha ◽  
Jie Zhang ◽  
...  

According to the Lorentz Invariance Violation originated from the quantum gravitational theory and the string theory, the Rarita-Schwinger equation of arbitrary spin fermions are exactly modified in the high energy case. Then we restudy the dynamic equation of fermions with arbitrary spin in charged Kerr-Newman-Kasuya (KNK) black hole space-time. Moreover, the tunneling radiation characteristics of fermions are studied according to the modified dynamic equation. Therefore, some new expressions for physical quantities such as tunneling rate, surface gravitation, Hawking temperature and entropy of the black hole are corrected. As a result, we calculate that the surface gravitation at the event horizon of the KNK black hole is a constant, and find that the Hawking temperature will increase, but the entropy will decrease with the increasing of correction parameter.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jie Zhang ◽  
Zhie Liu ◽  
Bei Sha ◽  
Xia Tan ◽  
Yuzhen Liu ◽  
...  

In the space-time of the nonstationary spherical symmetry Vaidya-Bonner black hole, an accurate modification of Hawking tunneling radiation for fermions with arbitrary spin is researched. Considering a light dispersion relationship derived from string theory, quantum gravitational theory, and the Rarita-Schwinger equation in the nonstationary spherical symmetry space-time, we derive an accurately modified dynamic equation for fermions with arbitrary spin. By solving the equation, the modified tunneling rate of fermions with arbitrary spin, Hawking temperature, and entropy at the event horizon of the Vaidya-Bonner black hole are presented. We find that the Hawking temperature will increase, but the entropy will decrease compared with the case without the Lorentz Invariation Violation modification.


2020 ◽  
Vol 98 (11) ◽  
pp. 999-1003
Author(s):  
YuZhen Liu ◽  
Bei Sha ◽  
Xia Tan ◽  
Zhie Liu ◽  
Jie Zhang

Considering the modified Lorentz dispersion relation, combined with the Dirac equation and Rarita–Schwinger equation of fermions in stationary axisymmetric Sen black hole space–time, the fermion tunneling radiation of the black hole is modified accurately, and meaningful physical quantities such as the modified fermion tunneling rate, event horizon temperature, and entropy of the black hole are obtained. The discussion of the conclusions shows that the effect of the Lorentz dispersion relation and Lorentz violation theory on particle dynamics must be considered in curved space–time during the study of quantum theory and Hawking tunneling radiation.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sukruti Bansal ◽  
Silvia Nagy ◽  
Antonio Padilla ◽  
Ivonne Zavala

Abstract Recent progress in understanding de Sitter spacetime in supergravity and string theory has led to the development of a four dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua, also called de Sitter supergravity. One approach makes use of constrained (nilpotent) superfields, while an alternative one couples supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action. These two approaches have been shown to give rise to the same 4D action. A novel approach to de Sitter vacua in supergravity involves the generalisation of unimodular gravity to supergravity using a super-Stückelberg mechanism. In this paper, we make a connection between this new approach and the previous two which are in the context of nilpotent superfields and the goldstino brane. We show that upon appropriate field redefinitions, the 4D actions match up to the cubic order in the fields. This points at the possible existence of a more general framework to obtain de Sitter spacetimes from high-energy theories.


2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2019 ◽  
Vol 35 (10) ◽  
pp. 2050061
Author(s):  
Z. Luo ◽  
X. G. Lan

It is suggested that the dispersion relation might be corrected at higher energy scales and lead to the deformed Hamilton–Jacobi equation. In this paper, we use the correction to investigate the fermion tunneling radiation for Demianski–Newman black hole spacetime, and the result shows that the corresponding Hawking temperature and the black hole entropy are related to the angular parameters of the black hole coordinates.


Sign in / Sign up

Export Citation Format

Share Document