Wave function of the photon in a curved spacetime

2020 ◽  
Vol 35 (36) ◽  
pp. 2050300
Author(s):  
K. Sogut ◽  
M. Salti

It is known that the classical variables are replaced by operators for the dynamics of the electromagnetic field, thus the second quantization is traditionally used. There is a significant question in modern theoretical physics area: “Why is there no fully developed first-quantized theory of photons?” In the present work, we argue that a photon wave function can be obtained if one uses the massless Duffin-Kemmer-Petiau (mDKP) equation. Thus, we focus on exact solutions of the mDKP equation the Robertson–Walker type spacetime via the Teleparallel Theory (TPT) of Gravity. The mDKP equation is generally known as the spinor formulation of the photons. We also focus on solutions of the Maxwell equations (MEs) to verify the equivalence between the mDKP and the ME formulations of the photons. It is shown that photons present an oscillatory behavior.

2002 ◽  
Vol 14 (04) ◽  
pp. 409-420 ◽  
Author(s):  
VIERI BENCI ◽  
DONATO FORTUNATO FORTUNATO

This paper is divided in two parts. In the first part we construct a model which describes solitary waves of the nonlinear Klein-Gordon equation interacting with the electromagnetic field. In the second part we study the electrostatic case. We prove the existence of infinitely many pairs (ψ, E), where ψ is a solitary wave for the nonlinear Klein-Gordon equation and E is the electric field related to ψ.


2013 ◽  
Vol 22 (04) ◽  
pp. 1350017 ◽  
Author(s):  
GINÉS R. PÉREZ TERUEL

We derive a new set of field equations within the framework of the Palatini formalism. These equations are a natural generalization of the Einstein–Maxwell equations which arise by adding a function [Formula: see text], with [Formula: see text] to the Palatini Lagrangian f(R, Q). The result we obtain can be viewed as the coupling of gravity with a nonlinear extension of the electromagnetic field. In addition, a new method is introduced to solve the algebraic equation associated to the Ricci tensor.


2005 ◽  
Vol 68 (12) ◽  
pp. 2081-2092
Author(s):  
V. V. Anisovich ◽  
L. G. Dakhno ◽  
V. N. Markov ◽  
V. A. Nikonov ◽  
A. V. Sarantsev

Second quantization (SQ) concepts were introduced in chapter 2 as a general tool to treat excitations in molecular collisions for which the dynamics were described in cartesian coordinates. This SQ-formulation, which was derived from the TDGH representation of the wave function, could be introduced if the potential was expanded locally to second order around the position defined by a trajectory. It is, however, possible to use the SQ approach in a number of other dynamical situations, as for instance when dealing with the vibrational excitation of diatomic and polyatomic molecules, or with energy transfer to solids and chemical reactions in the socalled reaction path formulation. Since the formal expressions in the operators are the same, irrespective of the system or dynamical situation, the algebraic manipulations are also identical, and, hence, the formal solution the same. But the dynamical input to the scheme is of course different from case to case. In the second quantization formulation of the dynamical problems, one solves the operator algebraic equations formally. Once the formal solution is obtained, we can compute the dynamical quantities which enter the expressions. The advantage over state or grid expansion methods is significant since (at least for bosons) the number of dynamical operators is much less than the number of states. In order to solve the problem to infinite order, that is, also the TDSE for the system, the operators have to form a closed set with respect to commutations. This makes it necessary to drop some two-quantum operators. Historically, the M = 1 quantum problem, namely that of a linearly forced harmonic oscillator, was solved using the operator algebraic approach by Pechukas and Light in 1966 [131]. In 1972, Kelley [128] solved the two-oscillator (M = 2) problem and the author solved the M = 3 and the general problem in 1978 [129] and 1980 [147], respectively. The general case was solved using graph theory designed for the problem and it will not be repeated here. But the formulas are given in this chapter and in the appendices B and C.


2020 ◽  
Vol 35 (21) ◽  
pp. 2050170
Author(s):  
Yu. M. Pismak ◽  
D. Shukhobodskaia

In the model with Chern-Simons potential describing the coupling of electromagnetic field with a two-dimensional material, the possibility of the appearance of bound field states, vanishing at sufficiently large distances from interacting with its macro-objects, is considered. As an example of such two-dimensional material object we consider a homogeneous isotropic plane. Its interaction with electromagnetic field is described by a modified Maxwell equation with singular potential. The analysis of their solution shows that the bound state of field cannot arise without external charges and currents. In the model with currents and charges the Chern-Simons potential in the modified Maxwell equations creates bound state in the form of the electromagnetic wave propagating along the material plane with exponentially decreasing amplitude in the orthogonal to its direction.


Sign in / Sign up

Export Citation Format

Share Document