Implementation of the ATLAS-SUSY-2018-32 analysis (sleptons and eletroweakinos with two leptons and missing transverse energy; 139 fb−1)

2020 ◽  
pp. 2141005
Author(s):  
Jack Y. Araz ◽  
Benjamin Fuks

We present the implementation in MadAnalysis 5 of the ATLAS-SUSY-2018-32 search for new physics and document the validation of this re-implementation. This analysis targets, with 139 fb[Formula: see text] of proton–proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector, the electroweak pair production of supersymmetric charginos and sleptons when they further decay into a final state comprising a pair of leptons and missing energy. The validation of our work is based on three [Formula: see text]-parity conserving supersymmetric benchmark setups that feature, respectively, chargino pair-production followed by decays into leptons via an intermediate weak boson, chargino pair-production followed by chargino cascade decays into leptons through a slepton mediator, and slepton pair-production followed by slepton direct decays into leptons.

2020 ◽  
pp. 2141010
Author(s):  
Jack Y. Araz ◽  
Benjamin Fuks

We present the implementation, in the MadAnalysis 5 framework, of the ATLAS-SUSY-2018-31 search for new physics, and document the validation of this implementation. This analysis targets, with 139 fb[Formula: see text] of proton–proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector between 2015 and 2018, the production of a pair of supersymmetric bottom squarks when they further decay through a cascade decay involving the second lightest neutralino and a Standard Model Higgs boson. The validation of our work is based on three benchmark scenarios targeting different kinematic configurations. The first of them considers a new physics spectrum leading to the presence of high-[Formula: see text] [Formula: see text]-jets originating from sbottom decays, whereas the last two, that differ by the neutralino mass spectrum, are dedicated to the compressed regime and thus yield the presence of soft [Formula: see text]-jets in the final state. We obtain an agreement between the MadAnalysis 5 predictions and the official ATLAS results at the level of 20–30%, the largest discrepancies being related to cases exhibiting a poor Monte Carlo numerical precision at the level of the official ATLAS results.


2020 ◽  
pp. 2141002
Author(s):  
Benjamin Fuks ◽  
Adil Jueid

We present an implementation of the CMS-EXO-17-015 analysis in the MadAnalysis 5 framework. The analysis targets a search for dark matter in a channel in which it originates from the production and decay of a pair of scalar leptoquarks. This search considers a luminosity [Formula: see text] of CMS data collected in 2016 and 2017, in proton-proton collisions at a center-of-mass energy of 13 TeV. The final state signature is comprised of one isolated highly-energetic muon, one jet with a large transverse momentum and a significant amount of missing transverse energy. We validate our implementation in MadAnalysis 5 for a specific leptoquark/dark matter benchmark scenario. In particular, we compare predictions obtained with MadAnalysis 5 with the official CMS results for various kinematical distributions relevant for the CMS-EXO-17-015 analysis, as well as detailed cut-flow tables. We have found an excellent agreement.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Wolfgang Kilian ◽  
Sichun Sun ◽  
Qi-Shu Yan ◽  
Xiaoran Zhao ◽  
Zhijie Zhao

Abstract We study the observability of new interactions which modify Higgs-pair production via vector-boson fusion processes at the LHC and at future proton-proton colliders. In an effective-Lagrangian approach, we explore in particular the effect of the operator $$ {h}^2{W}_{\mu \nu}^a{W}^{a,\mu \nu} $$ h 2 W μν a W a , μν , which describes the interaction of the Higgs boson with transverse vector-boson polarization modes. By tagging highly boosted Higgs bosons in the final state, we determine projected bounds for the coefficient of this operator at the LHC and at a future 27 TeV or 100 TeV collider. Taking into account unitarity constraints, we estimate the new-physics discovery potential of Higgs pair production in this channel.


2020 ◽  
pp. 2141007
Author(s):  
Malte Mrowietz ◽  
Sam Bein ◽  
Jory Sonneveld

We present the MadAnalysis 5 implementation and validation of the analysis Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum (CMS-SUS-19-006). The search targets signatures with at least two jets and large missing transverse momentum in the all-hadronic final state. The analyzed luminosity is 137 fb[Formula: see text], corresponding to the Run 2 proton-proton data set recorded by the CMS detector at 13 TeV. This implementation has been validated in a variety of simplified models, by comparing derived cut flow tables and histograms with information provided by the CMS collaboration, using event samples that we simulated for the purpose of this re-implementation study. The validation is found to reproduce the signal acceptance in most cases.


2020 ◽  
pp. 2141003
Author(s):  
Joon-Bin Lee ◽  
Jehyun Lee

We present the implementation in the MadAnalysis 5 framework of the CMS-HIG-18-011 search for exotic decays of the Standard Model Higgs boson, in which the Higgs boson is assumed to decay into a pair of light pseudoscalar [Formula: see text], that then further decay into a di-muon and di-[Formula: see text]-jet final state. This analysis considers proton-proton collisions at a center-of-mass energy of 13 TeV and data collected by the CMS experiment in 2016, with an integrated luminosity of 35.9 fb[Formula: see text]. We present a selection of recast predictions, obtained with MadAnalysis 5 and Delphes 3, that include a few differential distributions, yields, and efficiencies. We show that they agree at a level of a few percent with public CMS results.


2020 ◽  
Vol 35 (34n35) ◽  
pp. 2044002
Author(s):  
Ondřej Penc

The scattering of electroweak bosons tests the gauge structure of the Standard Model and is sensitive to anomalous quartic gauge couplings. In this paper, we present recent results on vector-boson scattering from the ATLAS experiment using proton–proton collisions with a center-of-mass energy of 13 TeV at the LHC. This includes the observation of [Formula: see text], [Formula: see text], and same-sign [Formula: see text] production via vector-boson scattering along with a measurement of [Formula: see text] production ([Formula: see text] denotes [Formula: see text] or [Formula: see text] boson) in semileptonic final states. The results can be used to constrain new physics that manifests as anomalous electroweak-boson self-interactions. Finally, predicted cross-sections for the electroweak scattering of two same-sign [Formula: see text] bosons in association with two jets are compared for a number of generators.


2019 ◽  
Vol 69 (1) ◽  
pp. 389-415 ◽  
Author(s):  
M. Benedikt ◽  
A. Blondel ◽  
P. Janot ◽  
M. Klein ◽  
M. Mangano ◽  
...  

After 10 years of physics at the Large Hadron Collider (LHC), the particle physics landscape has greatly evolved. Today, a staged Future Circular Collider (FCC), consisting of a luminosity-frontier highest-energy electron–positron collider (FCC-ee) followed by an energy-frontier hadron collider (FCC-hh), promises the most far-reaching physics program for the post-LHC era. FCC-ee will be a precision instrument used to study the Z, W, Higgs, and top particles, and will offer unprecedented sensitivity to signs of new physics. Most of the FCC-ee infrastructure could be reused for FCC-hh, which will provide proton–proton collisions at a center-of-mass energy of 100 TeV and could directly produce new particles with masses of up to several tens of TeV. This collider will also measure the Higgs self-coupling and explore the dynamics of electroweak symmetry breaking. Thermal dark matter candidates will be either discovered or conclusively ruled out by FCC-hh. Heavy-ion and electron–proton collisions (FCC-eh) will further contribute to the breadth of the overall FCC program. The integrated FCC infrastructure will serve the particle physics community through the end of the twenty-first century. This review combines key contents from the first three volumes of the FCC Conceptual Design Report.


2015 ◽  
Vol 30 (31) ◽  
pp. 1546009 ◽  
Author(s):  
Konstantinos Kousouris

Jet observables have been exploited extensively during the LHC Run 1 to search for physics beyond the Standard Model. In this article, the most recent results from the ATLAS and CMS collaborations are summarized. Data from proton–proton collisions at 7 and 8 TeV center-of-mass energy have been analyzed to study monojet, dijet, and multijet final states, searching for a variety of new physics signals that include colored resonances, contact interactions, extra dimensions, and supersymmetric particles. The exhaustive searches with jets in Run 1 did not reveal any signal, and the results were used to put stringent exclusion limits on the new physics models.


Sign in / Sign up

Export Citation Format

Share Document