Implementation of the CMS-SUS-19-006 analysis in the MadAnalysis 5 framework (supersymmetry with large hadronic activity and missing transverse energy; 137 fb−1)

2020 ◽  
pp. 2141007
Author(s):  
Malte Mrowietz ◽  
Sam Bein ◽  
Jory Sonneveld

We present the MadAnalysis 5 implementation and validation of the analysis Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum (CMS-SUS-19-006). The search targets signatures with at least two jets and large missing transverse momentum in the all-hadronic final state. The analyzed luminosity is 137 fb[Formula: see text], corresponding to the Run 2 proton-proton data set recorded by the CMS detector at 13 TeV. This implementation has been validated in a variety of simplified models, by comparing derived cut flow tables and histograms with information provided by the CMS collaboration, using event samples that we simulated for the purpose of this re-implementation study. The validation is found to reproduce the signal acceptance in most cases.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract The results of a search for new phenomena in final states with b-jets and missing transverse momentum using 139 fb−1 of proton-proton data collected at a centre-of-mass energy $$ \sqrt{s} $$ s = 13 TeV by the ATLAS detector at the LHC are reported. The analysis targets final states produced by the decay of a pair-produced supersymmetric bottom squark into a bottom quark and a stable neutralino. The analysis also seeks evidence for models of pair production of dark matter particles produced through the decay of a generic scalar or pseudoscalar mediator state in association with a pair of bottom quarks, and models of pair production of scalar third-generation down-type leptoquarks. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered by the analysis. Bottom squark masses below 1270 GeV are excluded at 95% confidence level if the neutralino is massless. In the case of nearly mass-degenerate bottom squarks and neutralinos, the use of dedicated secondary-vertex identification techniques permits the exclusion of bottom squarks with masses up to 660 GeV for mass splittings between the squark and the neutralino of 10 GeV. These limits extend substantially beyond the regions of parameter space excluded by similar ATLAS searches performed previously.


2020 ◽  
pp. 2141006
Author(s):  
Mark D. Goodsell

This is the validation note for the recast in MadAnalysis 5 of the study ATLAS-SUSY-2019-08: a search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two [Formula: see text]-jets in [Formula: see text] collisions at [Formula: see text] = 13 TeV with the ATLAS detector, using an integrated luminosity of 139 fb[Formula: see text]. The recasting code is validated against cutflows and expected signal events for benchmark scenarios, and the exclusion limits are reproduced for a simplified supersymmetric electroweakino sector consisting of a degenerate wino decaying to a light stable bino.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

AbstractThe results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two W bosons, the lightest neutralinos ($$\tilde{\chi }^0_1$$ χ ~ 1 0 ), and quarks, are presented: the signal is characterised by the presence of a single charged lepton ($$e^{\pm }$$ e ± or $$\mu ^{\pm }$$ μ ± ) from a W boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$$^{-1}$$ - 1 of proton–proton collision data taken at a centre-of-mass energy $$\sqrt{s}=13$$ s = 13   delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2  (1.4 ) are excluded at 95% confidence level for a light $$\tilde{\chi }^0_1$$ χ ~ 1 0 .


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. The results are interpreted in the context of various R-parity-conserving models where squarks and gluinos are produced in pairs or in association and a neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 2.30 TeV for a simplified model containing only a gluino and the lightest neutralino, assuming the latter is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.85 TeV are excluded if the lightest neutralino is massless. These limits extend substantially beyond the region of supersymmetric parameter space excluded previously by similar searches with the ATLAS detector.


2020 ◽  
pp. 2141005
Author(s):  
Jack Y. Araz ◽  
Benjamin Fuks

We present the implementation in MadAnalysis 5 of the ATLAS-SUSY-2018-32 search for new physics and document the validation of this re-implementation. This analysis targets, with 139 fb[Formula: see text] of proton–proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector, the electroweak pair production of supersymmetric charginos and sleptons when they further decay into a final state comprising a pair of leptons and missing energy. The validation of our work is based on three [Formula: see text]-parity conserving supersymmetric benchmark setups that feature, respectively, chargino pair-production followed by decays into leptons via an intermediate weak boson, chargino pair-production followed by chargino cascade decays into leptons through a slepton mediator, and slepton pair-production followed by slepton direct decays into leptons.


2020 ◽  
pp. 2141002
Author(s):  
Benjamin Fuks ◽  
Adil Jueid

We present an implementation of the CMS-EXO-17-015 analysis in the MadAnalysis 5 framework. The analysis targets a search for dark matter in a channel in which it originates from the production and decay of a pair of scalar leptoquarks. This search considers a luminosity [Formula: see text] of CMS data collected in 2016 and 2017, in proton-proton collisions at a center-of-mass energy of 13 TeV. The final state signature is comprised of one isolated highly-energetic muon, one jet with a large transverse momentum and a significant amount of missing transverse energy. We validate our implementation in MadAnalysis 5 for a specific leptoquark/dark matter benchmark scenario. In particular, we compare predictions obtained with MadAnalysis 5 with the official CMS results for various kinematical distributions relevant for the CMS-EXO-17-015 analysis, as well as detailed cut-flow tables. We have found an excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document