ON A SIMPLE EVALUATION OF ANOMALIES FROM THE PATH INTEGRAL MEASURE

1990 ◽  
Vol 05 (18) ◽  
pp. 1423-1432 ◽  
Author(s):  
TAKESHI INAGAKI

Anomalies can be evaluated as non-trivial Jacobian factors of the path integral measure. We make several comments on this calculation by taking two-dimensional gravity theories as examples. We present a new method which makes practical calculations much simpler.

1996 ◽  
Vol 54 (8) ◽  
pp. 4879-4885 ◽  
Author(s):  
Dae Sung Hwang ◽  
Youngjai Kiem ◽  
Dahl Park

2004 ◽  
Vol 19 (02) ◽  
pp. 151-157 ◽  
Author(s):  
SAMI I. MUSLIH

Two-dimensional gravity with torsion is investigated using the Hamilton–Jacobi formalism. The equations of motion and the action integral are obtained as total differential equations in many variables. The integrabilty conditions, lead us to obtain the path integral quantization as an integration over the canonical phase-space coordinates.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Fridrich Valach ◽  
Donald R. Youmans

Abstract We give an interpretation of the holographic correspondence between two-dimensional BF theory on the punctured disk with gauge group PSL(2, ℝ) and Schwarzian quantum mechanics in terms of a Drinfeld-Sokolov reduction. The latter, in turn, is equivalent to the presence of certain edge states imposing a first class constraint on the model. The constrained path integral localizes over exceptional Virasoro coadjoint orbits. The reduced theory is governed by the Schwarzian action functional generating a Hamiltonian S1-action on the orbits. The partition function is given by a sum over topological sectors (corresponding to the exceptional orbits), each of which is computed by a formal Duistermaat-Heckman integral.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yiming Chen ◽  
Victor Gorbenko ◽  
Juan Maldacena

Abstract We consider two dimensional CFT states that are produced by a gravitational path integral.As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.


Author(s):  
Didier Clamond

Steady two-dimensional surface capillary–gravity waves in irrotational motion are considered on constant depth. By exploiting the holomorphic properties in the physical plane and introducing some transformations of the boundary conditions at the free surface, new exact relations and equations for the free surface only are derived. In particular, a physical plane counterpart of the Babenko equation is obtained. This article is part of the theme issue ‘Nonlinear water waves’.


1992 ◽  
Vol 07 (35) ◽  
pp. 3291-3302 ◽  
Author(s):  
KIYONORI YAMADA

We show that the two-dimensional gravity coupled to c=−2 matter field in Polyakov’s light-cone gauge has a twisted N=2 superconformal algebra. We also show that the BRST cohomology in the light-cone gauge actually coincides with that in the conformal gauge. Based on this observation the relations between the topological algebras are discussed.


1990 ◽  
Vol 05 (16) ◽  
pp. 1251-1258 ◽  
Author(s):  
NOUREDDINE MOHAMMEDI

We find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL (2, R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2+1 dimensional gravity. We present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given.


Sign in / Sign up

Export Citation Format

Share Document