NEGATIVE BINOMIAL FITS TO MULTIPLICITY DISTRIBUTIONS FROM CENTRAL 16O+Cu COLLISIONS AT 14.6 A GeV/c AND THEIR IMPLICATION FOR “INTERMITTENCY”

1994 ◽  
Vol 09 (02) ◽  
pp. 89-100 ◽  
Author(s):  
M.J. TANNENBAUM

The method of normalized factorial moments has been used extensively to study the fluctuations in pseudorapidity of charged particle multiplicity as a function of the interval δη. Experience in analyzing the data from light and heavy ion collisions in terms of distributions rather than moments suggests that conventional fluctuations of multiplicity and transverse energy can be well described by gamma or Negative Binomial Distributions (NBD). Multiplicity distributions from central (ZCAL) collisions of 16 O+Cu at 14.6 A GeV/c have been analyzed by the E802 collaboration as a function of the interval δη≥0.1 in the range 1.2≤η≤2.2. Excellent fits to NBD were obtained in all δη bins. The k parameter of the NBD fit exhibits a steep linear increase with the δη interval, which due to the well known property of the NBD under convolution, indicates that the multiplicity distributions in adjacent bins of pseudorapidity δη~0.1 are largely statistically independent. This result explains and demystifies “intermittency.”

2001 ◽  
Vol 16 (07) ◽  
pp. 1227-1235 ◽  
Author(s):  
C. B. YANG ◽  
X. CAI

The influence of pure statistical fluctuations on K/π ratio is investigated in an event-by-event way. Poisson and the modified negative binomial distributions are used as the multiplicity distributions since they both have statistical background. It is shown that the distributions of the ratio in these cases are Gaussian, and the mean and relative variance are given analytically.


2017 ◽  
Vol 32 (12) ◽  
pp. 1750060
Author(s):  
Sadhana Dash ◽  
Basanta K. Nandi ◽  
Ranjit Nayak ◽  
Ashutosh Kumar Pandey ◽  
Priyanka Sett

The centrality dependence of the charged-particle multiplicity densities [Formula: see text] and transverse energy densities [Formula: see text] are investigated using the two-component Glauber approach for broad range of energies in heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC). A comprehensive study shows that the data is well-described within the framework of two-component model which includes the contribution of “soft processes” and “hard processes” for different centrality classes and energies. The data at two different energies are compared by means of the ratio of [Formula: see text] (and [Formula: see text]) to see the interplay of energy scaling and relative contribution of hard processes.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 1883-1889 ◽  
Author(s):  
◽  
DEBASISH DAS

The influence of Bose–Einstein statistics on multi-particle production characterized for various systems and energies by the STAR collaboration provides interesting information about the space-time dynamics of relativistic heavy-ion collisions at RHIC. We present the centrality and transverse mass dependence measurements of the two-pion interferometry in Au + Au collisions at [Formula: see text] and Cu + Cu collisions at [Formula: see text] and 200 GeV. We compare the new data with previous STAR measurements from p + p , d + Au and Au + Au collisions at [Formula: see text]. In all systems and centralities, HBT radii decrease with transverse mass in a similar manner, which is qualitatively consistent with collective flow. The scaling of the apparent freeze-out volume with the number of participants and charged particle multiplicity is studied. Measurements of Au + Au collisions at same centralities and different energies yield different freeze-out volumes, which mean that N part is not a suitable scaling variable. The multiplicity scaling of the measured HBT radii is found to be independent of colliding system and collision energy.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Sandeep Chatterjee ◽  
Sabita Das ◽  
Lokesh Kumar ◽  
D. Mishra ◽  
Bedangadas Mohanty ◽  
...  

We review the chemical and kinetic freeze-out conditions in high energy heavy-ion collisions for AGS, SPS, RHIC, and LHC energies. Chemical freeze-out parameters are obtained using produced particle yields in central collisions while the corresponding kinetic freeze-out parameters are obtained using transverse momentum distributions of produced particles. For chemical freeze-out, different freeze-out scenarios are discussed such as single and double/flavor dependent freeze-out surfaces. Kinetic freeze-out parameters are obtained by doing hydrodynamic inspired blast wave fit to the transverse momentum distributions. The beam energy and centrality dependence of transverse energy per charged particle multiplicity are studied to address the constant energy per particle freeze-out criteria in heavy-ion collisions.


Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 757-780
Author(s):  
Ritu Aggarwal ◽  
Manjit Kaur

Charged particle multiplicity distributions in positron–proton deep inelastic scattering at a centre-of-mass energy s = 300 GeV, measured in the hadronic centre-of-mass frames and in different pseudorapidity windows are studied in the framework of two statistical distributions, the shifted Gompertz distribution and the Weibull distribution. Normalised moments, normalised factorial moments and the H-moments of the multiplicity distributions are determined. The phenomenon of oscillatory behaviour of the counting statistics and the Koba-Nielsen-Olesen (KNO) scaling behaviour are investigated. This is the first such analysis using these data. In addition, projections of the two distributions for the expected average charged multiplicities obtainable at the proposed future ep colliders.


1989 ◽  
Vol 04 (02) ◽  
pp. 115-123 ◽  
Author(s):  
V. KUMAR ◽  
P. LAL ◽  
H. S. PALSANIA ◽  
K. B. BHALLA ◽  
S. LOKANATHAN

Negative Binomial Distribution (NBD) has been shown to fit the charged particle multiplicity distributions obtained in various hadron-nucleus collision experiments at energies E lab = 6.2 to 800 GeV. The inverse of NBD-parameter k shows a logarithmic increase with CM energy, [Formula: see text] which is different from that in elementary collisions. It has also been shown for the abovementioned reactions that the average size of the 'clan' increases with energy. The investigation of clan structure in π− + Em reaction shows that the clans are more numerous but smaller in size in the forward than backward hemisphere.


Sign in / Sign up

Export Citation Format

Share Document