ANALYSIS OF REFRACTION EFFECTS IN NUCLEAR SCATTERING ON THE BASIS OF THE S-MATRIX APPROACH

1995 ◽  
Vol 10 (31) ◽  
pp. 2305-2312 ◽  
Author(s):  
YU. A. BEREZHNOY ◽  
V.V. PILIPENKO

A new S-matrix model is proposed to describe refraction effects in the intermediate energy light nucleus elastic scattering on atomic nuclei. An analysis of experimental data on scattering of 4 He , 6 Li and 16 O nuclei by different target nuclei is made on the basis of this model and the near-far decomposition of the scattering amplitude. Comparison of our results with those obtained by the optical model is discussed.

2021 ◽  
Vol 36 (36) ◽  
Author(s):  
Liyuan Hu ◽  
Yushou Song ◽  
Yingwei Hou ◽  
Huilan Liu ◽  
Gongming Yu

In this paper, the S-matrix parametrization is adopted to analyze the refractive scattering of [Formula: see text] at intermediate energies systematically and that of [Formula: see text] at 230 MeV. For [Formula: see text], the experimental data containing the Fraunhofer oscillations and the rainbow falloff are reproduced very well by adjusting parameters. The S-matrix parameters and the rainbow angles show evident tendencies as the bombarding energy increases, which are comparable with those of [Formula: see text] elastic scattering on carbon target. For [Formula: see text], the experimental data in the forward direction are reproduced successfully by slightly adjusting the parameters used in the calculation of [Formula: see text] at 210 MeV. The calculated results show that the [Formula: see text] scattering exhibits a comparable transparency with that of [Formula: see text] at intermediate energies.


1998 ◽  
Vol 07 (06) ◽  
pp. 723-746 ◽  
Author(s):  
Yu. A. Berezhnoy ◽  
V. A. Slipko

The theory of the polarization phenomena in the inclusive one- and two-nucleon transfer reactions (d,n) and (3 H ,n) at intermediate energies is developed on the basis of the S-matrix approach. Since the parameters of the S-matrix are found from fitting the experimental data for the elastic scattering of protons by the nuclei, the calculated polarization observables of the neutrons released in reactions 40 Ca (d,n), 208 Pb (d,n), 40 Ca (3 H ,n) and 208 Pb (3 H ,n) in the wide energy region do not have any free parameters.


2020 ◽  
Vol 239 ◽  
pp. 03010
Author(s):  
Liyuan Hu ◽  
Yushou Song ◽  
Yingwei Hou ◽  
Huilan Liu

The experimental data of the elastic scattering angular distribution of 17F+12C at 170 MeV is analyzed by the continuum-discretized coupled channels (CDCC) method and the optical model (OM). In the CDCC calculation, the unambiguous optical potential of 16O+12C is used as the input to give the coupling potentials. A very refractive feature is found and two evident Airy minima are predicted at large angles. The one-channel calculation is also performed and gives nearly the same result. In the OM calculations, this optical potential of 16O+12C is used again and adjusted to reproduce the angular distribution of 17F+12C. The Airy oscillation appears again in the calculated angular distribution. These results indicate that the elastic scattering of 17F+12C at 170 MeV has the possibility of the nuclear rainbow phenomenon, which is probably due to the contribution from the 16O core.


2002 ◽  
Vol 11 (05) ◽  
pp. 425-436 ◽  
Author(s):  
M. Y. H. FARAG ◽  
M. Y. M. HASSAN

The relativistic description of the proton-nucleus elastic scattering can be considered within the framework of a relativistic optical potential model. The elastic scattering of proton with the nuclei 12 C , 16 O , 20 Ne , and 24 Mg at 800 MeV and 1.04 GeV are studied for relativistic and nonrelativistic treatments. The real optical potentials and the differential cross sections of these reactions are calculated. The obtained results are compared with the corresponding results obtained from the calculation depending on the Woods–Saxon optical potential which were adjusted to fit the experimental data. The present results are in good agreement with the experimental data.


2019 ◽  
Vol 28 (09) ◽  
pp. 1950074
Author(s):  
Zakaria M. M. Mahmoud ◽  
Awad A. Ibraheem ◽  
M. A. Hassanain

In this work, we simultaneously reanalyzed the differential elastic scattering cross-sections ([Formula: see text]) and the vector analyzing power ([Formula: see text]) of [Formula: see text]He elastic scattering. This analysis was performed using the folded optical model for both real central and spin-orbit (SO) potentials, respectively. For the imaginary central, we used the usual Woods-Saxon (WS) form. Three different model density distributions are used to calculate the potential. We aimed to examine the applicability of the microscopically derived SO potential and the structure effect of 6He nucleus. The presence of the [Formula: see text] experimental data of [Formula: see text]He makes it interesting for this study. Our calculations showed that the three densities gave similar predictions for the cross-sections data. The three microscopic SO potentials calculations of [Formula: see text] are not in a good agreement with the experimental data. We concluded that the SO formalism in its current form needs more investigations for exotic halo nuclei.


2019 ◽  
Vol 28 (04) ◽  
pp. 1950028 ◽  
Author(s):  
N. Burtebayev ◽  
M. Nassurlla ◽  
A. Sabidolda ◽  
S. B. Sakuta ◽  
A. A. Karakhodjaev ◽  
...  

Angular distribution of the [Formula: see text] elastic scattering was measured at [Formula: see text][Formula: see text]MeV. Experimental data showed a significant increase in differential cross-sections at backward angles. The optical model with phenomenological potentials reproduces well the experimental cross-sections in the region of the angles of the forward hemisphere, but is not able to explain the increase in cross-sections at large angles. The distorted wave Born approximation method was used to reproduce the experimental data at large angles [Formula: see text] by taking into consideration a deuteron transfer. Spectroscopic amplitude has been extracted for the configuration [Formula: see text]C[Formula: see text]B + [Formula: see text] from the analysis.


1994 ◽  
Vol 49 (3) ◽  
pp. 1609-1620 ◽  
Author(s):  
Anders Ingemarsson ◽  
Agris Auce ◽  
Roger Johansson

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
I. M. Dremin

Using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, it is shown how the shape and the darkness of the inelastic interaction region of colliding protons change with increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes. Possible evolution of this shape with the dark core at the LHC to the fully transparent one at higher energies is discussed that implies that the terminology of the black disk would be replaced by the black toroid. The approach to asymptotics is disputed. The ratio of the real to imaginary parts of the nonforward elastic scattering amplitude is briefly discussed. All the conclusions are only obtained in the framework of the indubitable unitarity condition using experimental data about the elastic scattering of protons in the diffraction cone without any reference to quantum chromodynamics (QCD) or phenomenological approaches.


2010 ◽  
Vol 19 (02) ◽  
pp. 243-261 ◽  
Author(s):  
Yu. A. BEREZHNOY ◽  
V. P. MIKHAILYUK ◽  
V. V. PILIPENKO

The multiple diffraction scattering theory and the α-cluster model with dispersion have been applied for calculations of the observables for the elastic scattering of intermediate energy protons by 20 Ne and 24 Mg nuclei. The target nuclei are considered as composed of the core (16 O nucleus) and additional α-clusters (one α-cluster for 20 Ne nucleus and a dumb-bell α-cluster configuration for 24 Mg nucleus). Taking into account the α-cluster configuration of the core, it was supposed that the additional α-cluster or center of mass of the dumb-bell are arranged with the most probability inside or outside of the core. The calculated observables for the elastic p–20 Ne and p–24 Mg scattering are in agreement with the existing experimental data. The influence of the deformed core contribution on the behavior of the calculated observables also is tested.


Sign in / Sign up

Export Citation Format

Share Document