ONE-LOOP FREE ENERGY FOR D-BRANES IN CONSTANT ELECTROMAGNETIC FIELD

1996 ◽  
Vol 11 (31) ◽  
pp. 2525-2530 ◽  
Author(s):  
A.A. BYTSENKO ◽  
S.D. ODINTSOV ◽  
L.N. GRANDA

We calculate the one-loop free energy for two parallel D-branes connected by open bosonic (neutral or charged) string in a constant uniform electromagnetic (EM) field at nonzero temperature. For neutral string, external EM field contribution appears as multiplier (Born-Infeld type action) of one-loop quantities without the external EM field. The Hagedorn temperature is not changed if compare with the case of standard string gas in the constant electromagnetic field.

1996 ◽  
Vol 74 (5-6) ◽  
pp. 282-289 ◽  
Author(s):  
V. P. Gusynin ◽  
I. A. Shovkovy

The derivative expansion of the one-loop effective Lagrangian in QED4 is considered. The first term in such an expansion is the famous Schwinger result for a constant electromagnetic field. In this paper we give an explicit expression for the next term containing two derivatives of the field strength Fμν. The results are presented for both fermion and scalar electrodynamics. Some possible applications of an inhomogeneous external field are pointed out.


2013 ◽  
Vol 28 (14) ◽  
pp. 1350056 ◽  
Author(s):  
A. REFAEI

The Euler–Heisenberg effective action at the one-loop for a constant electromagnetic field is derived in Krein space quantization with Ford's idea of fluctuated light-cone. In this work, we present a perturbative but convergent solution of the effective action. Without using any renormalization procedure, the result coincides with the famous renormalized Euler–Heisenberg action.


1991 ◽  
Vol 06 (30) ◽  
pp. 5409-5433 ◽  
Author(s):  
STEVEN K. BLAU ◽  
MATT VISSER ◽  
ANDREAS WIPF

Motivated by the seminal work of Schwinger, we obtain explicit closed-form expressions for the one-loop effective action in a constant electromagnetic field. We discuss both massive and massless charged scalars and spinors in two, three and four dimensions. Both strong-field and weak-field limits are calculable. The latter limit results in an asymptotic expansion whose first term reproduces the Euler-Heinsenberg effective Lagrangian. We use the prescription of zeta-function renormalization, and indicate its relationship to Schwinger’s renormalized effective action.


1998 ◽  
Vol 13 (19) ◽  
pp. 1531-1537
Author(s):  
TOMOKO KADOYOSHI ◽  
AKIO SUGAMOTO ◽  
SHIN'ICHI NOJIRI ◽  
SERGEI D. ODINTSOV

We study the vacuum polarization of supersymmetric toroidal D-brane placed in the constant electromagnetic field. Explicit calculation of the one-loop effective potential is performed for membrane with constant magnetic or electric background. We find that the one-loop potentials vanish as the effect of supersymmetry.


1983 ◽  
Vol 61 (8) ◽  
pp. 1172-1183
Author(s):  
Anton Z. Capri ◽  
Gebhard Grübl ◽  
Randy Kobes

Quantization of the electromagnetic field in a class of covariant gauges is performed on a positive metric Hilbert space. Although losing manifest covariance, we find at the free field level the existence of two physical spaces where Poincaré transformations are implemented unitarily. This gives rise to two different physical interpretations of the theory. Unitarity of the S operator for an interaction with an external source then forces one to postulate that a restricted gauge invariance must hold. This singles out one interpretation, the one where two transverse photons are physical.


2021 ◽  
Vol 74 (3) ◽  
pp. 615-675
Author(s):  
Matthias Erbar ◽  
Martin Huesmann ◽  
Thomas Leblé

2002 ◽  
Vol 17 (06n07) ◽  
pp. 790-793 ◽  
Author(s):  
V. V. NESTERENKO ◽  
G. LAMBIASE ◽  
G. SCARPETTA

The basic results in calculations of the thermodynamic functions of electromagnetic field in the background of a dilute dielectric ball at zero and finite temperature are presented. Summation over the angular momentum values is accomplished in a closed form by making use of the addition theorem for the relevant Bessel functions. The behavior of the thermodynamic characteristics in the low and high temperature limits is investigated. The T3-term in the low temperature expansion of the free energy is recovered (this term has been lost in our previous calculations).


Sign in / Sign up

Export Citation Format

Share Document