scholarly journals MORE EVIDENCE FOR THE WDVV EQUATIONS IN ${\mathcal N} = 2$ SUSY YANG–MILLS THEORIES

2000 ◽  
Vol 15 (08) ◽  
pp. 1157-1206 ◽  
Author(s):  
A. MARSHAKOV ◽  
A. MIRONOV ◽  
A. MOROZOV

We consider 4D and 5D [Formula: see text] supersymmetric theories and demonstrate that in general their Seiberg–Witten prepotentials satisfy the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations. General proof for the Yang–Mills models (with matter in the first fundamental representation) makes use of the hyperelliptic curves and underlying integrable systems. A wide class of examples is discussed; it contains few understandable exceptions. In particular, in the perturbative regime of 5D theories, in addition to naive field theory expectations some extra terms appear, as happens in heterotic string models. We consider also the example of the Yang–Mills theory with matter hypermultiplet in the adjoint representation (related to the elliptic Calogero–Moser system) when the standard WDVV equations do not hold.

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Adrien Florio ◽  
João M. Viana P. Lopes ◽  
José Matos ◽  
João Penedones

Abstract We study the phase diagram of 5-dimensional SU(2) Yang-Mills theory on the lattice. We consider two extensions of the fundamental plaquette Wilson action in the search for the continuous phase transition suggested by the 4 + ϵ expansion. The extensions correspond to new terms in the action: i) a unit size plaquette in the adjoint representation or ii) a two-unit sided square plaquette in the fundamental representation. We use Monte Carlo to sample the first and second derivative of the entropy near the confinement phase transition, with lattices up to 125. While we exclude the presence of a second order phase transition in the parameter space we sampled for model i), our data is not conclusive in some regions of the parameter space of model ii).


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

The motivation for supersymmetry. The algebra, the superspace, and the representations. Field theory models and the non-renormalisation theorems. Spontaneous and explicit breaking of super-symmetry. The generalisation of the Montonen–Olive duality conjecture in supersymmetric theories. The remarkable properties of extended supersymmetric theories. A brief discussion of twisted supersymmetry in connection with topological field theories. Attempts to build a supersymmetric extention of the standard model and its experimental consequences. The property of gauge supersymmetry to include general relativity and the supergravity models.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Hongliang Jiang

Abstract Celestial amplitude is a new reformulation of momentum space scattering amplitudes and offers a promising way for flat holography. In this paper, we study the celestial amplitudes in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills (SYM) theory aiming at understanding the role of superconformal symmetry in celestial holography. We first construct the superconformal generators acting on the celestial superfield which assembles all the on-shell fields in the multiplet together in terms of celestial variables and Grassmann parameters. These generators satisfy the superconformal algebra of $$ \mathcal{N} $$ N = 4 SYM theory. We also compute the three-point and four-point celestial super-amplitudes explicitly. They can be identified as the conformal correlation functions of the celestial superfields living at the celestial sphere. We further study the soft and collinear limits which give rise to the super-Ward identity and super-OPE on the celestial sphere, respectively. Our results initiate a new perspective of understanding the well-studied $$ \mathcal{N} $$ N = 4 SYM amplitudes via 2D celestial conformal field theory.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francesco Galvagno ◽  
Michelangelo Preti

Abstract We consider a family of $$ \mathcal{N} $$ N = 2 superconformal field theories in four dimensions, defined as ℤq orbifolds of $$ \mathcal{N} $$ N = 4 Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, using both the matrix model approach arising from supersymmetric localisation on the four-sphere and explicit field theory calculations on the flat space using the $$ \mathcal{N} $$ N = 1 superspace formalism. We implement a highly efficient algorithm to produce a large number of results for finite values of N , exploiting the symmetries of the quiver to reduce the complexity of the mixing between the operators. Finally the interplay with the field theory calculations allows to isolate special observables which deviate from $$ \mathcal{N} $$ N = 4 only at high orders in perturbation theory.


1991 ◽  
Vol 06 (20) ◽  
pp. 3571-3598 ◽  
Author(s):  
NOUREDDINE CHAIR ◽  
CHUAN-JIE ZHU

Some tetrahedra in SUk(2) Chern-Simons-Witten theory are computed. The results can be used to compute an arbitrary tetrahedron inductively by fusing with the fundamental representation. The results obtained are in agreement with those of quantum groups. By associating a (finite) topological field theory (FTFT) to every rational conformal field theory (RCFT), we show that the pentagon and hexagon equations in RCFT follow directly from some skein relations in FTFT. By generalizing the operation of surgery on links in FTFT, we also derive an explicit expression for the modular transformation matrix S(k) of the one-point conformal blocks on a torus in RCFT and the equations satisfied by S(k), in agreement with those required in RCFT. The implication of our results on the general program of classifying RCFT is also discussed.


2009 ◽  
Vol 24 (07) ◽  
pp. 1309-1331 ◽  
Author(s):  
ANTON M. ZEITLIN

We show explicitly how Batalin–Vilkovisky Yang–Mills action emerges as a homotopy generalization of Chern–Simons theory from the algebraic constructions arising from string field theory.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Marco Frasca ◽  
Anish Ghoshal

Abstract We investigate the non-perturbative regimes in the class of non-Abelian theories that have been proposed as an ultraviolet completion of 4-D Quantum Field Theory (QFT) generalizing the kinetic energy operators to an infinite series of higher-order derivatives inspired by string field theory. We prove that, at the non-perturbative level, the physical spectrum of the theory is actually corrected by the “infinite number of derivatives” present in the action. We derive a set of Dyson-Schwinger equations in differential form, for correlation functions till two-points, the solution for which are known in the local theory. We obtain that just like in the local theory, the non-local counterpart displays a mass gap, depending also on the mass scale of non-locality, and show that it is damped in the deep UV asymptotically. We point out some possible implications of our result in particle physics and cosmology and discuss aspects of non-local QCD-like scenarios.


Sign in / Sign up

Export Citation Format

Share Document