scholarly journals Chiral correlators in $$ \mathcal{N} $$ = 2 superconformal quivers

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francesco Galvagno ◽  
Michelangelo Preti

Abstract We consider a family of $$ \mathcal{N} $$ N = 2 superconformal field theories in four dimensions, defined as ℤq orbifolds of $$ \mathcal{N} $$ N = 4 Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, using both the matrix model approach arising from supersymmetric localisation on the four-sphere and explicit field theory calculations on the flat space using the $$ \mathcal{N} $$ N = 1 superspace formalism. We implement a highly efficient algorithm to produce a large number of results for finite values of N , exploiting the symmetries of the quiver to reduce the complexity of the mixing between the operators. Finally the interplay with the field theory calculations allows to isolate special observables which deviate from $$ \mathcal{N} $$ N = 4 only at high orders in perturbation theory.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Evgeny I. Buchbinder ◽  
Jessica Hutomo ◽  
Sergei M. Kuzenko

Abstract We consider $$ \mathcal{N} $$ N = 1 superconformal field theories in four dimensions possessing an additional conserved spinor current multiplet Sα and study three-point functions involving such an operator. A conserved spinor current multiplet naturally exists in superconformal theories with $$ \mathcal{N} $$ N = 2 supersymmetry and contains the current of the second supersymmetry. However, we do not assume $$ \mathcal{N} $$ N = 2 supersymmetry. We show that the three-point function of two spinor current multiplets and the $$ \mathcal{N} $$ N = 1 supercurrent depends on three independent tensor structures and, in general, is not contained in the three-point function of the $$ \mathcal{N} $$ N = 2 supercurrent. It then follows, based on symmetry considerations only, that the existence of one more Grassmann odd current multiplet in $$ \mathcal{N} $$ N = 1 superconformal field theory does not necessarily imply $$ \mathcal{N} $$ N = 2 superconformal symmetry.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2143-2152 ◽  
Author(s):  
DAVID BERENSTEIN

Recent progress towards understanding a strong coupling expansion for various superconformal field theories in four dimensions is described. First, the case of the maximally supersymmetric Yang Mills theory is analyzed, as well as many calculations that can be done directly at strong coupling and matched to the AdS dual geometry. Also, this understanding is extended to other AdS duals where the sphere is replaced by a Sasaki-Einstein manifold. Particular emphasis is made on matching exactly part of the supergravity dual spectrum of various of these field theories by using wave function methods.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Andreas P. Braun ◽  
Jin Chen ◽  
Babak Haghighat ◽  
Marcus Sperling ◽  
Shuhang Yang

Abstract We study circle compactifications of 6d superconformal field theories giving rise to 5d rank 1 and rank 2 Kaluza-Klein theories. We realise the resulting theories as M-theory compactifications on local Calabi-Yau 3-folds and match the prepotentials from geometry and field theory. One novelty in our approach is that we include explicit dependence on bare gauge couplings and mass parameters in the description which in turn leads to an accurate parametrisation of the prepotential including all parameters of the field theory. We find that the resulting geometries admit “fibre-base” duality which relates their six-dimensional origin with the purely five-dimensional quantum field theory interpretation. The fibre-base duality is realised simply by swapping base and fibre curves of compact surfaces in the local Calabi-Yau which can be viewed as the total space of the anti-canonical bundle over such surfaces. Our results show that such swappings precisely occur for surfaces with a zero self-intersection of the base curve and result in an exchange of the 6d and 5d pictures.


1999 ◽  
Vol 14 (06) ◽  
pp. 815-843 ◽  
Author(s):  
M. J. DUFF

There has recently been a revival of interest in anti-de-Sitter space (AdS), brought about by the conjectured duality between physics in the bulk of AdS and a conformal field theory on the boundary. Since the whole subject of branes, singletons and superconformal field theories on the AdS boundary was an active area of research about ten years ago, we begin with a historical review, including the idea of the "membrane at the end of the universe." We then compare the old and new approaches and discuss some new results on AdS 5 × S5 and AdS 3 × S3.


1993 ◽  
Vol 08 (05) ◽  
pp. 929-945 ◽  
Author(s):  
N. MAGGIORE ◽  
S.P. SORELLA

Perturbation theory for a class of topological field theories containing antisymmetric tensor fields is considered. These models are characterized by a supersymmetric structure which allows us to establish their perturbative finiteness.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Edward Quijada ◽  
Henrique Boschi-Filho

We study analytically and numerically the interaction potentials between a pair of quark and antiquark on D3, M2, and M5 branes. These potentials are obtained using Maldacena’s method involving Wilson loops and present confining and nonconfining behaviours in different situations that we explore in this work. In particular, at the near horizon geometry, the potentials are nonconfining in agreement with conformal field theory expectations. On the other side, far from horizon, the dual field theories are no longer conformal and the potentials present confinement. This is in agreement with the behaviour of strings in flat space where the string mimics the expected flux tube of QCD. A study of the transition between the confining/nonconfining regimes in the three different scenarios (D3, M2, and M5) is also performed.


Science ◽  
2017 ◽  
Vol 358 (6365) ◽  
pp. 915-917 ◽  
Author(s):  
J. B. Pendry ◽  
Paloma Arroyo Huidobro ◽  
Yu Luo ◽  
Emanuele Galiffi

In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.


1992 ◽  
Vol 07 (04) ◽  
pp. 777-794
Author(s):  
C. P. MARTIN

We analyze whether the so-called method of stochastic analytic regularization is suitable as an intermediate step for constructing perturbative renormalized quantum field theories. We choose a λϕ3 in six dimensions to prove that this regularization method does not in general provide a quantum field theory. This result seems to apply to any field theory with a quadratically UV-divergent stochastic two-point function, for instance λϕ4 and gauge theories in four dimensions.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Eric Perlmutter ◽  
Leonardo Rastelli ◽  
Cumrun Vafa ◽  
Irene Valenzuela

Abstract We formulate a series of conjectures relating the geometry of conformal manifolds to the spectrum of local operators in conformal field theories in d > 2 spacetime dimensions. We focus on conformal manifolds with limiting points at infinite distance with respect to the Zamolodchikov metric. Our central conjecture is that all theories at infinite distance possess an emergent higher-spin symmetry, generated by an infinite tower of currents whose anomalous dimensions vanish exponentially in the distance. Stated geometrically, the diameter of a non-compact conformal manifold must diverge logarithmically in the higher-spin gap. In the holographic context our conjectures are related to the Distance Conjecture in the swampland program. Interpreted gravitationally, they imply that approaching infinite distance in moduli space at fixed AdS radius, a tower of higher-spin fields becomes massless at an exponential rate that is bounded from below in Planck units. We discuss further implications for conformal manifolds of superconformal field theories in three and four dimensions.


Sign in / Sign up

Export Citation Format

Share Document