scholarly journals PROGRESS IN WEAKLY COUPLED STRING PHENOMENOLOGY

2002 ◽  
Vol 17 (supp01) ◽  
pp. 70-83
Author(s):  
MARY K. GAILLARD

The weakly coupled vacuum of E8 ⊗ E8 heterotic string theory remains an attractive scenario for particle physics. The particle spectrum and the issue of dilaton stabilization are reviewed. A specific model for hidden sector condensation and supersymmetry breaking, that respects known constraints from string theory, is described, and its phenomenological and cosmological implications are discussed.

2015 ◽  
Vol 30 (08) ◽  
pp. 1530005 ◽  
Author(s):  
Mary K. Gaillard

Since the first "string revolution" of 1984, the weakly coupled E8⊗E8 heterotic string theory has been a promising candidate for the underlying theory of the Standard Model. The particle spectrum and the issue of dilaton stabilization are reviewed. Specific models for hidden sector condensation and supersymmetry breaking are described and their phenomenological and cosmological implications are discussed. The importance of T-duality is emphasized. Theoretical challenges to finding a satisfactory vacuum, as well as constraints from LHC data are addressed.


1992 ◽  
Vol 07 (09) ◽  
pp. 749-756 ◽  
Author(s):  
SOUMITRA SENGUPTA ◽  
PARTHASARATHI MAJUMDAR

We show that for the heterotic string theory in the presence of arbitrary background gauge, gravitational and antisymmetric tensor fields, truncated by a general coordinate dependent compactification a la Scherk-Schwarz, the requirement of 2D conformal invariance is as restrictive as to inhibit supersymmetry breaking with vanishing cosmological constant.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Keiya Ishiguro ◽  
Tatsuo Kobayashi ◽  
Hajime Otsuka

Abstract We study the impacts of matter field Kähler metric on physical Yukawa couplings in string compactifications. Since the Kähler metric is non-trivial in general, the kinetic mixing of matter fields opens a new avenue for realizing a hierarchical structure of physical Yukawa couplings, even when holomorphic Yukawa couplings have the trivial structure. The hierarchical Yukawa couplings are demonstrated by couplings of pure untwisted modes on toroidal orbifolds and their resolutions in the context of heterotic string theory with standard embedding. Also, we study the hierarchical couplings among untwisted and twisted modes on resolved orbifolds.


2002 ◽  
Vol 622 (1-2) ◽  
pp. 3-45 ◽  
Author(s):  
Katsuyuki Sugiyama ◽  
Satoshi Yamaguchi

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Keiya Ishiguro ◽  
Tatsuo Kobayashi ◽  
Hajime Otsuka

Abstract We examine a common origin of four-dimensional flavor, CP, and U(1)R symmetries in the context of heterotic string theory with standard embedding. We find that flavor and U(1)R symmetries are unified into the Sp(2h + 2, ℂ) modular symmetries of Calabi-Yau threefolds with h being the number of moduli fields. Together with the $$ {\mathbb{Z}}_2^{\mathrm{CP}} $$ ℤ 2 CP CP symmetry, they are enhanced to GSp(2h + 2, ℂ) ≃ Sp(2h + 2, ℂ) ⋊ $$ {\mathbb{Z}}_2^{\mathrm{CP}} $$ ℤ 2 CP generalized symplectic modular symmetry. We exemplify the S3, S4, T′, S9 non-Abelian flavor symmetries on explicit toroidal orbifolds with and without resolutions and ℤ2, S4 flavor symmetries on three-parameter examples of Calabi-Yau threefolds. Thus, non-trivial flavor symmetries appear in not only the exact orbifold limit but also a certain class of Calabi-Yau three-folds. These flavor symmetries are further enlarged to non-Abelian discrete groups by the CP symmetry.


2007 ◽  
Vol 22 (08n09) ◽  
pp. 1451-1588 ◽  
Author(s):  
MARY K. GAILLARD ◽  
BRENT D. NELSON

We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kähler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.


Sign in / Sign up

Export Citation Format

Share Document