RARE HADRONIC B DECAYS

2004 ◽  
Vol 19 (06) ◽  
pp. 918-933 ◽  
Author(s):  
J. R. FRY

Recent data from the rare decays of B mesons into hadronic final states is presented from BaBar, Belle, CDF and CLEO. Where possible the data are compared with theoretical calculations, with the twin aims of further testing the Standard Model and searching for evidence of new physics. A brief description is given of some theoretical approaches in order to indicate which decays are the most sensitive for further study.

2007 ◽  
Vol 22 (30) ◽  
pp. 5433-5442
Author(s):  
R. J. BARLOW

New results on rare decays of B mesons and τ leptons are summarised. Measurement are generally in excellent agreement with the Standard Model predictions, the only exceptions being the polarisation of vector particles in B decays and the non-appearance of CP violation in B ± → K ±π0.


2002 ◽  
Vol 17 (22) ◽  
pp. 3078-3097 ◽  
Author(s):  
GINO ISIDORI

We present an overview of rare K, D and B decays. Particular attention is devoted to those flavour-changing neutral-current processes of K and B mesons that offer the possibility of new significant tests of the Standard Model. The sensitivity of these modes to physics beyond the Standard Model and the status of their experimental study are also discussed.


2001 ◽  
Vol 16 (supp01b) ◽  
pp. 888-890
Author(s):  
◽  
BRUCE KNUTESON

We present a quasi-model-independent search for physics beyond the standard model. We define final states to be studied, and construct a rule that identifies a set of variables appropriate for any particular final state. A new algorithm ("Sleuth") searches for regions of excess in the space of those variables and quantifies the significance of any detected excess. After demonstrating the sensititvity of the method, we apply it to the semi-inclusive channel eμX collected in ≈108 pb -1 of [Formula: see text] collisions at [Formula: see text] at the DØ experiment at the Fermilab Tevatron. We find no evidence of new high pT physics in this sample.


2006 ◽  
Vol 21 (08n09) ◽  
pp. 1738-1749 ◽  
Author(s):  
LUCA SILVESTRINI

We review the status of rare decays and CP violation in extensions of the Standard Model. We analyze the determination of the unitarity triangle and the model-independent constraints on new physics that can be derived from this analysis. We find stringent bounds on new contributions to [Formula: see text] and [Formula: see text] mixing, pointing either to models of minimal flavour violation or to models with new sources of flavour and CP violation in b → s transitions. We discuss the status of the universal unitarity triangle in minimal flavour violation, and study rare decays in this class of models. We then turn to supersymmetric models with nontrivial mixing between second and third generation squarks, discuss the present constraints on this mixing and analyze the possible effects on CP violation in b → s nonleptonic decays and on [Formula: see text] mixing. We conclude presenting an outlook on Lepton-Photon 2009.


2019 ◽  
Vol 222 ◽  
pp. 01007 ◽  
Author(s):  
Dmitri Melikhov

Rare B-decays induced by flavour-changing neutral currents (FCNC) is one of the promising candidates for probing physics beyond the Standard model. However, for identifying potential new physics from the data, reliable control over QCD contributions is necessary. We focus on one of such QCD contributions – the charming loops – that potentially can lead to difficulties in disentangling new physics effects from the observable and discuss the possibility to gain control over theoretical predictions for charming loops.


2015 ◽  
Vol 30 (31) ◽  
pp. 1546009 ◽  
Author(s):  
Konstantinos Kousouris

Jet observables have been exploited extensively during the LHC Run 1 to search for physics beyond the Standard Model. In this article, the most recent results from the ATLAS and CMS collaborations are summarized. Data from proton–proton collisions at 7 and 8 TeV center-of-mass energy have been analyzed to study monojet, dijet, and multijet final states, searching for a variety of new physics signals that include colored resonances, contact interactions, extra dimensions, and supersymmetric particles. The exhaustive searches with jets in Run 1 did not reveal any signal, and the results were used to put stringent exclusion limits on the new physics models.


2015 ◽  
Vol 30 (25) ◽  
pp. 1550156 ◽  
Author(s):  
Xiao-Gang He ◽  
Guan-Nan Li ◽  
Ya-Juan Zheng

The Higgs boson [Formula: see text] has the largest coupling to the top quark [Formula: see text] among the standard model (SM) fermions. This is one of the ideal places to investigate new physics beyond SM. In this work, we study the potential of determining Higgs boson [Formula: see text] properties at the LHC and future 33 TeV and 100 TeV [Formula: see text] colliders by analyzing various operators formed from final states variables in [Formula: see text] production. The discrimination power from SM coupling is obtained with Higgs boson reconstructed from [Formula: see text] and [Formula: see text]. We find that [Formula: see text] process can provide more than [Formula: see text] discrimination power with [Formula: see text] integrated luminosity in a wide range of allowed Higgs to top couplings for the LHC, the 33 TeV and 100 TeV colliders. For [Formula: see text] the discrimination power will be below [Formula: see text] at the LHC, while for 33 TeV and 100 TeV colliders, more than [Formula: see text] sensitivity can be reached.


2006 ◽  
Vol 21 (14) ◽  
pp. 1137-1150 ◽  
Author(s):  
CHUAN-HUNG CHEN ◽  
CHAO-QIANG GENG

We study the decays of B→K(*)ℓ+ℓ- in split supersymmetry with R-parity violation. We find that the decay branching ratio of B→Kτ+τ- in the new physics model due to the scalar interactions can be 1.8×10-6 which is about one order of magnitude larger than in the standard model, whereas those of B→Kℓ+ℓ- (ℓ=e and μ) and the K* modes are insensitive to the new physics. On the other hand, the forward–backward asymmetries of B→Kτ+τ- and Kμ+μ-, vanishing in the standard model, can be over 10 and 1%, respectively. In addition, we show that the new interactions will significantly change the forward–backward asymmetry in B→K*τ+τ-.


2020 ◽  
Vol 234 ◽  
pp. 01004 ◽  
Author(s):  
P. de Simone

Tests of lepton flavour universality in B decays offer an excellent opportunity to test the Standard Model, and show hints of new physics in analyses performed by the LHCb, Belle and BaBar experiments. Several theoretical models proposed to explain possible violation of lepton flavour universality claim a connection with lepton flavour violation in B decays. These proceedings review the experimental status of the tests of lepton flavour universality and the searches of lepton flavour violation in B decays.


Sign in / Sign up

Export Citation Format

Share Document