scholarly journals THE MAXWELL LAGRANGIAN IN PURELY AFFINE GRAVITY

2008 ◽  
Vol 23 (03n04) ◽  
pp. 567-579 ◽  
Author(s):  
NIKODEM J. POPŁAWSKI

The purely affine Lagrangian for linear electrodynamics, that has the form of the Maxwell Lagrangian in which the metric tensor is replaced by the symmetrized Ricci tensor and the electromagnetic field tensor by the tensor of homothetic curvature, is dynamically equivalent to the Einstein–Maxwell equations in the metric–affine and metric formulation. We show that this equivalence is related to the invariance of the Maxwell Lagrangian under conformal transformations of the metric tensor. We also apply to a purely affine Lagrangian the Legendre transformation with respect to the tensor of homothetic curvature to show that the corresponding Legendre term and the new Hamiltonian density are related to the Maxwell–Palatini Lagrangian for the electromagnetic field. Therefore the purely affine picture, in addition to generating the gravitational Lagrangian that is linear in the curvature, justifies why the electromagnetic Lagrangian is quadratic in the electromagnetic field.

1976 ◽  
Vol 80 (2) ◽  
pp. 357-364 ◽  
Author(s):  
M. L. Woolley

AbstractIt is shown that, in a simply connected four dimensional Riemannian space, an arbitrary divergence-free vector generates a one-parameter group of point transformations which leaves Maxwell's equations unchanged. This result is used to show that, if the metric tensor of a simply connected vacuum Einstein–Maxwell space-time admits a group of motions which is also an invariance group of the electromagnetic field tensor, then there exists a one-parameter family of metric tensors all of which satisfy the Einstein–Maxwell equations with the invariant electromagnetic field as source.


2009 ◽  
Vol 18 (05) ◽  
pp. 809-829 ◽  
Author(s):  
NIKODEM J. POPŁAWSKI

The Eddington Lagrangian in the purely affine formulation of general relativity generates the Einstein equations with the cosmological constant. The Ferraris–Kijowski purely affine Lagrangian for the electromagnetic field, which has the form of the Maxwell Lagrangian with the metric tensor replaced by the symmetrized Ricci tensor, is dynamically equivalent to the Einstein–Maxwell Lagrangian in the metric formulation. We show that the sum of the two affine Lagrangians is dynamically inequivalent to the sum of the analogous Lagrangians in the metric–affine/metric formulation. We also show that such a construction is valid only for weak electromagnetic fields. Therefore the purely affine formulation that combines gravitation, electromagnetism and the cosmological constant cannot be a simple sum of terms corresponding to separate fields. Consequently, this formulation of electromagnetism seems to be unphysical, unlike the purely metric and metric–affine pictures, unless the electromagnetic field couples to the cosmological constant.


2009 ◽  
Vol 24 (20n21) ◽  
pp. 3975-3984
Author(s):  
NIKODEM J. POPŁAWSKI

Eisenhart's classical unified field theory is based on a non-Riemannian affine connection related to the covariant derivative of the electromagnetic field tensor. The sourceless field equations of this theory arise from vanishing of the torsion trace and the symmetrized Ricci tensor. We formulate Eisenhart's theory from the metric-affine variational principle. In this formulation, a Lagrange multiplier constraining the torsion becomes the source for the Maxwell equations.


1970 ◽  
Vol 48 (20) ◽  
pp. 2423-2426 ◽  
Author(s):  
G. M. Levman

Although Maxwell's vacuum field equations are invariant under the so-called duality rotation, the usual Lagrangian density for the electromagnetic field, which is bilinear in the first derivatives of the electromagnetic potentials, does not exhibit that invariance. It is shown that if one takes the components of the electromagnetic field tensor as field variables then the most general Lorentz invariant Lagrangian density bilinear in the electromagnetic fields and their first derivatives is determined uniquely by the requirement of duality invariance. The ensuing field equations are identical with the iterated Maxwell equations.


2013 ◽  
Vol 22 (04) ◽  
pp. 1350017 ◽  
Author(s):  
GINÉS R. PÉREZ TERUEL

We derive a new set of field equations within the framework of the Palatini formalism. These equations are a natural generalization of the Einstein–Maxwell equations which arise by adding a function [Formula: see text], with [Formula: see text] to the Palatini Lagrangian f(R, Q). The result we obtain can be viewed as the coupling of gravity with a nonlinear extension of the electromagnetic field. In addition, a new method is introduced to solve the algebraic equation associated to the Ricci tensor.


Author(s):  
J. Pierrus

In 1905, when Einstein published his theory of special relativity, Maxwell’s work was already about forty years old. It is therefore both remarkable and ironic (recalling the old arguments about the aether being the ‘preferred’ reference frame for describing wave propagation) that classical electrodynamics turned out to be a relativistically correct theory. In this chapter, a range of questions in electromagnetism are considered as they relate to special relativity. In Questions 12.1–12.4 the behaviour of various physical quantities under Lorentz transformation is considered. This leads to the important concept of an invariant. Several of these are encountered, and used frequently throughout this chapter. Other topics considered include the transformationof E- and B-fields between inertial reference frames, the validity of Gauss’s law for an arbitrarily moving point charge (demonstrated numerically), the electromagnetic field tensor, Maxwell’s equations in covariant form and Larmor’s formula for a relativistic charge.


Universe ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. 229
Author(s):  
Bahram Mashhoon

We revisit acceleration-induced nonlocal electrodynamics and the phenomenon of photon spin-rotation coupling. The kernel of the theory for the electromagnetic field tensor involves parity violation under the assumption of linearity of the field kernel in the acceleration tensor. However, we show that parity conservation can be maintained by extending the field kernel to include quadratic terms in the acceleration tensor. The field kernel must vanish in the absence of acceleration; otherwise, a general dependence of the kernel on the acceleration tensor cannot be theoretically excluded. The physical implications of the quadratic kernel are briefly discussed.


Author(s):  
H. J. Bhabha

In a recent paper Dirac has shown that by passing from the ordinary Euclidean space to a four-dimensional conformal space, some of the equations of physics can be written in a tensor form, the indices of which take on six values. Those equations which can be written in this form are then invariant under conformal transformations of the Euclidean space. Among the equations of physics which have this more general invariance are the Maxwell equations, as was proved by a direct transformation a long time ago by Cunningham, and Bateman, so that Dirac's paper provides an alternative and more general proof of this result. Certain errors ∥ in Dirac's paper, however, necessitate a reformulation of the proof. Before we do this in § 2, we briefly recapitulate in § 1 some of the general results derived there. In § 3 we investigate further the conformal invariance of the wave equation for an electron in the presence of a general electromagnetic field.


Sign in / Sign up

Export Citation Format

Share Document