On geometry of the (generalized) G2-manifolds

2015 ◽  
Vol 30 (20) ◽  
pp. 1550112 ◽  
Author(s):  
Sen Hu ◽  
Zhi Hu

In this paper, we first understand the classical [Formula: see text]-structure and [Formula: see text]-geometry from the viewpoint of spinor, which is a more familiar framework for physicists. Explicit construction of invariant spinor is given via the Dirac gamma matrices. We introduce a notion of multispinor bundle associated with invariant spinor and differential operator on the section of this bundle. Then we study the vector fields satisfy some additional properties on [Formula: see text]-manifold, more precisely, we prove some no-go theorems corresponding to the vector field preserving the associated 4-form on [Formula: see text]-manifold, and we also consider the nowhere-vanishing vector field which induces an integrable complex structure on the vertical direction of tangent bundle. Next we discuss the relation between the variation of metric and that of effective action on the moduli space of integrable [Formula: see text]-structures. In the last section, we deal with the structure operators on generalized [Formula: see text]-manifold after describing the integrability of generalized [Formula: see text]-structure, some identities of structure operators are derived, which are analogues of Kähler-type and Weitzenböck-type identities under the classical case. And finally, we introduce a flow of which a generalized [Formula: see text]-manifold can be realized as the fixed point.

2021 ◽  
Vol 244 ◽  
pp. 09004
Author(s):  
Dmitry Nesnov

In the scientific literature, the field theory is most fully covered in the cylindrical and spherical coordinate systems. This is explained by the fact that the mathematical apparatus of these systems is most well studied. When the source of field has a more complex structure than a point or a straight line, there is a need for new approaches to their study. The goal of this research is to adapt the field theory related to curvilinear coordinates in order to represent it in the normal conical coordinates. In addition, an important part of the research is the development of a geometrical modeling apparatus for scalar and vector field level surfaces using computer graphics. The paper shows the dependences of normal conical coordinates on rectangular Cartesian coordinates, Lame coefficients. The differential characteristics of the scalar and vector fields in normal conical coordinates are obtained: Laplacian of scalar and vector fields, divergence, rotation of the vector field. The example case shows the features of the application of the mathematical apparatus of geometrical field modeling in normal conical coordinates. For the first time, expressions for the characteristics of the scalar and vector fields in normal conical coordinates are obtained. Methods for geometrical modeling of fields using computer graphics have been developed to provide illustration in their study.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Graziano Crasta ◽  
Virginia De Cicco ◽  
Annalisa Malusa

AbstractWe introduce a family of pairings between a bounded divergence-measure vector field and a function u of bounded variation, depending on the choice of the pointwise representative of u. We prove that these pairings inherit from the standard one, introduced in [G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 1983, 293–318], [G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal. 147 1999, 2, 89–118], all the main properties and features (e.g. coarea, Leibniz, and Gauss–Green formulas). We also characterize the pairings making the corresponding functionals semicontinuous with respect to the strict convergence in \mathrm{BV}. We remark that the standard pairing in general does not share this property.


2019 ◽  
Vol 16 (11) ◽  
pp. 1950180 ◽  
Author(s):  
I. P. Lobo ◽  
G. G. Carvalho

Motivated by the hindrance of defining metric tensors compatible with the underlying spinor structure, other than the ones obtained via a conformal transformation, we study how some geometric objects are affected by the action of a disformal transformation in the closest scenario possible: the disformal transformation in the direction of a null-like vector field. Subsequently, we analyze symmetry properties such as mutual geodesics and mutual Killing vectors, generalized Weyl transformations that leave the disformal relation invariant, and introduce the concept of disformal Killing vector fields. In most cases, we use the Schwarzschild metric, in the Kerr–Schild formulation, to verify our calculations and results. We also revisit the disformal operator using a Newman–Penrose basis to show that, in the null-like case, this operator is not diagonalizable.


1991 ◽  
Vol 11 (3) ◽  
pp. 443-454 ◽  
Author(s):  
Morris W. Hirsch

AbstractFor certainCr3-dimensional cooperative or competitive vector fieldsF, whereris any positive integer, it is shown that for any nonwandering pointp, every neighborhood ofFin theCrtopology contains a vector field for whichpis periodic, and which agrees withFoutside a given neighborhood ofp. The proof is based on the existence of invariant planar surfaces throughp.


2011 ◽  
Vol 13 (02) ◽  
pp. 191-211 ◽  
Author(s):  
D. CARRASCO-OLIVERA ◽  
C. A. MORALES ◽  
B. SAN MARTÍN

Let M be a 3-manifold with boundary ∂M. Let X be a C∞, vector field on M, tangent to ∂M, exhibiting a singular cycle associated to a hyperbolic equilibrium σ∈∂M with real eigenvalues λss < λs < 0 < λu satisfying λs - λss - 2λu > 0. We prove under generic conditions and k large enough the existence of a Ck robust transitive set of X, that is, any Ck vector field Ck close to X exhibits a transitive set containing the cycle. In particular, C∞ vector fields exhibiting Ck robust transitive sets, for k large enough, which are not singular-hyperbolic do exist on any compact 3-manifold with boundary.


1995 ◽  
Vol 05 (03) ◽  
pp. 895-899 ◽  
Author(s):  
CHAI WAH WU ◽  
LEON O. CHUA

Chua’s oscillator is topologically conjugate to a large class of vector fields with a scalar non-linearity. In this letter, we give an algorithm which, given a vector field in this class, finds the parameters for Chua’s oscillator for which Chua’s oscillator is topologically conjugate to it. We illustrate this by transforming Sparrow’s system and the chaotic Colpitts oscillator into equivalent Chua’s oscillators.


2021 ◽  
Vol 62 ◽  
pp. 53-66
Author(s):  
Fethi Latti ◽  
◽  
Hichem Elhendi ◽  
Lakehal Belarbi

In the present paper, we introduce a new class of natural metrics on the tangent bundle $TM$ of the Riemannian manifold $(M,g)$ denoted by $G^{f,h}$ which is named a twisted Sasakian metric. A necessary and sufficient conditions under which a vector field is harmonic with respect to the twisted Sasakian metric are established. Some examples of harmonic vector fields are presented as well.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550111 ◽  
Author(s):  
Mircea Crasmareanu ◽  
Camelia Frigioiu

Fix ξ a unitary vector field on a Riemannian manifold M and γ a non-geodesic Frenet curve on M satisfying the Rytov law of polarization optics. We prove in these conditions that γ is a Legendre curve for ξ if and only if the γ-Fermi–Walker covariant derivative of ξ vanishes. The cases when γ is circle or helix as well as ξ is (conformal) Killing vector filed or potential vector field of a Ricci soliton are analyzed and an example involving a three-dimensional warped metric is provided. We discuss also K-(para)contact, particularly (para)Sasakian, manifolds and hypersurfaces in complex space forms.


Author(s):  
Emanuele Paolini ◽  
Eugene Stepanov

The scope of the paper is twofold. We show that for a large class of measurable vector fields in the sense of Weaver (i.e. derivations over the algebra of Lipschitz functions), called in the paper laminated, the notion of integral curves may be naturally defined and characterized (when appropriate) by an ordinary differential equation. We further show that for such vector fields the notion of a flow of the given positive Borel measure similar to the classical one generated by a smooth vector field (in a space with smooth structure) may be defined in a reasonable way, so that the measure ‘flows along’ the appropriately understood integral curves of the given vector field and the classical continuity equation is satisfied in the weak sense.


2011 ◽  
Vol 11 (2) ◽  
Author(s):  
Nassif Ghoussoub ◽  
Abbas Moameni ◽  
Ramón Zárate Sáiz

AbstractWe use the theory of selfdual Lagrangians to give a variational approach to the homogenization of equations in divergence form, that are driven by a periodic family of maximal monotone vector fields. The approach has the advantage of using Γ-convergence methods for corresponding functionals just as in the classical case of convex potentials, as opposed to the graph convergence methods used in the absence of potentials. A new variational formulation for the homogenized equation is also given.


Sign in / Sign up

Export Citation Format

Share Document