scholarly journals Review of QCD, cosmological phase transitions, QGP, heavy quark meson production enhancement and suppression

2017 ◽  
Vol 32 (15) ◽  
pp. 1730008 ◽  
Author(s):  
Leonard S. Kisslinger

This review of the quantum chromodynamics (QCD), the early universe cosmological phase transition from the quark–gluon plasma (QGP) to our present universe (QCDPT), relativistic heavy ion collisions (RHIC) which can produce the QGP, the possible detection of the QGP produced by the production of mixed hybrid heavy quark mesons. We also review the recent studies of the production of mixed heavy quark hybrids via RHIC and heavy quark meson suppression in p-Pb and Pb–Pb collisions.

2016 ◽  
Vol 31 (07) ◽  
pp. 1630010 ◽  
Author(s):  
Leonard S. Kisslinger ◽  
Debasish Das

This is a review of the Quantum Chromodynamics Cosmological Phase Transitions, the quark–gluon plasma, the production of heavy quark states via [Formula: see text]–[Formula: see text] collisions and Relativistic Heavy Ion Collisions (RHIC) using the mixed hybrid theory for the [Formula: see text] and [Formula: see text] states; and the possible detection of the quark–gluon plasma via heavy quark production using RHIC. Recent research on fragmentation for the production of [Formula: see text] mesons is reviewed, as is future theoretical and experimental research on the Collins and Sivers fragmentation functions for pions produced in polarized [Formula: see text]–[Formula: see text] collisions.


2018 ◽  
Vol 171 ◽  
pp. 01003
Author(s):  
Rachid Nouicer

Hadrons conveying strange quarks or heavy quarks are essential probes of the hot and dense medium created in relativistic heavy-ion collisions. With hidden strangeness, ϕ meson production and its transport in the nuclear medium have attracted high interest since its discovery. Heavy quark-antiquark pairs, like charmonium and bottomonium mesons, are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. In this context, the PHENIX collaboration carries out a comprehensive physics program which studies the ϕ meson production, and heavy flavor production in relativistic heavy-ion collisions at RHIC. In recent years, the PHENIX experiment upgraded the detector in installing silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region. With these new upgrades, the experiment has collected large data samples, and enhanced the capability of heavy flavor measurements via precision tracking. This paper summarizes the latest PHENIX results concerning ϕ meson, open and closed charm and beauty heavy quark production in relativistic heavy-ion collisions. These results are presented as a function of rapidity, energy and system size, and their interpretation with respect to the current theoretical understanding.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 1930-1936 ◽  
Author(s):  
WEI LIU ◽  
CHE MING KO ◽  
BEN-WEI ZHANG

A gluon or quark jet traversing through a quark-gluon plasma can be converted into a quark or gluon jet through scatterings with thermal partons. Their conversion rates due to two-body elastic and inelastic scattering as well as scatterings involving gluon radiation are evaluated in the lowest order in Quantum Chromodynamics (QCD). Including both energy loss and conversions of quark and gluon jets in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we find a net conversion of quark jets to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the p/π+ and [Formula: see text] ratios at high transverse momentum. Using the larger QCD coupling constant from lattice QCD calculations than that given by the perturbative QCD further enhances the net quark to gluon jet conversion rate, leading to a closer similarity between these ratios at high transverse momentum in central Au + Au collisions at [Formula: see text] and in p + p collisions at same energy as observed in experiments.


2013 ◽  
Vol 22 (08) ◽  
pp. 1350059 ◽  
Author(s):  
X. Z. BAI ◽  
C. B. YANG

The effect of multiplicity correlation between two bins to the dynamical fluctuations is investigated for a second-order phase transition from quark–gluon plasma (QGP) to hadrons, within the Ginzburg–Landau description for the transition. Normalized factorial correlators are used to characterize the dynamical fluctuations. A scaling behavior among the correlators is found, and an approximate universal exponent is obtained with very weak dependence on the details of the phase transition.


1989 ◽  
Vol 04 (15) ◽  
pp. 3717-3757 ◽  
Author(s):  
W. M. GEIST

Basic theoretical ideas on a phase transition in heavy ion collisions to a thermalized plasma of free quarks and gluons are outlined. Major experiments are then described which made use of oxygen and sulphur beams with moderate (BNL) or high (CERN) momenta. Representative results pertaining to both average event features and quark-gluon plasma properties are discussed in some detail. This review addresses also interested non-specialists.


Sign in / Sign up

Export Citation Format

Share Document