scholarly journals Bound state solution of the Klein–Fock–Gordon equation with the Hulthén plus a ring-shaped-like potential within SUSY quantum mechanics

2018 ◽  
Vol 33 (33) ◽  
pp. 1850203 ◽  
Author(s):  
A. I. Ahmadov ◽  
Sh. M. Nagiyev ◽  
M. V. Qocayeva ◽  
K. Uzun ◽  
V. A. Tarverdiyeva

In this paper, the bound state solution of the modified Klein–Fock–Gordon equation is obtained for the Hulthén plus ring-shaped-like potential by using the developed scheme to overcome the centrifugal part. The energy eigenvalues and corresponding radial and azimuthal wave functions are defined for any [Formula: see text] angular momentum case on the conditions that scalar potential is whether equal and nonequal to vector potential, the bound state solutions of the Klein–Fock–Gordon equation of the Hulthén plus ring-shaped-like potential are obtained by Nikiforov–Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. The equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is revealed owing to both methods. The energy levels and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary [Formula: see text] states. A closed form of the normalization constant of the wave functions is also found. It is shown that the energy eigenvalues and eigenfunctions are sensitive to [Formula: see text] radial and [Formula: see text] orbital quantum numbers.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
A. I. Ahmadov ◽  
S. M. Aslanova ◽  
M. Sh. Orujova ◽  
S. V. Badalov

The relativistic wave equations determine the dynamics of quantum fields in the context of quantum field theory. One of the conventional tools for dealing with the relativistic bound state problem is the Klein-Fock-Gordon equation. In this work, using a developed scheme, we present how to surmount the centrifugal part and solve the modified Klein-Fock-Gordon equation for the linear combination of Hulthén and Yukawa potentials. In particular, we show that the relativistic energy eigenvalues and corresponding radial wave functions are obtained from supersymmetric quantum mechanics by applying the shape invariance concept. Here, both scalar potential conditions, which are whether equal and nonequal to vector potential, are considered in the calculation. The energy levels and corresponding normalized eigenfunctions are represented as a recursion relation regarding the Jacobi polynomials for arbitrary l states. Beyond that, a closed form of the normalization constant of the wave functions is found. Furthermore, we state that the energy eigenvalues are quite sensitive with potential parameters for the quantum states. The nonrelativistic and relativistic results obtained within SUSY QM overlap entirely with the results obtained by ordinary quantum mechanics, and it displays that the mathematical implementation of SUSY quantum mechanics is quite perfect.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850021 ◽  
Author(s):  
A. I. Ahmadov ◽  
Maria Naeem ◽  
M. V. Qocayeva ◽  
V. A. Tarverdiyeva

In this paper, the bound-state solution of the modified radial Schrödinger equation is obtained for the Manning–Rosen plus Hulthén potential by using new developed scheme to overcome the centrifugal part. The energy eigenvalues and corresponding radial wave functions are defined for any [Formula: see text] angular momentum case via the Nikiforov–Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. Thanks to both methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is presented. The energy levels and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary [Formula: see text] states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to [Formula: see text] radial and [Formula: see text] orbital quantum numbers.


Author(s):  
S.M. Aslanova ◽  

This paper presents an analytical bound-state solution to the Duffin - Kemmer - Petiau equation for the new putative combined Manning - Rosen and Yukawa class potentials. Using the developed scheme to approximate and overcome the difficulties arising in the centrifugal part of the potential, the bound-state solution of the modified Duffin - Kemmer - Petiau equation is found. Analytical expressions of energy eigenvalue and the corresponding radial wave functions are obtained for an arbitrary value of the orbital quantum number l . Also, eigenfunctions are expressed in terms of hypergeometric functions. It is shown that energy levels and eigenfunctions are quite sensitive to the choice of radial and orbital quantum numbers.


2016 ◽  
Vol 25 (01) ◽  
pp. 1650002 ◽  
Author(s):  
V. H. Badalov

In this work, the analytical solutions of the [Formula: see text]-dimensional radial Schrödinger equation are studied in great detail for the Wood–Saxon potential by taking advantage of the Pekeris approximation. Within a novel improved scheme to surmount centrifugal term, the energy eigenvalues and corresponding radial wave functions are found for any angular momentum case within the context of the Nikiforov–Uvarov (NU) and Supersymmetric quantum mechanics (SUSYQM) methods. In this way, based on these methods, the same expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformed each other is demonstrated. In addition, a finite number energy spectrum depending on the depth of the potential [Formula: see text], the radial [Formula: see text] and orbital [Formula: see text] quantum numbers and parameters [Formula: see text] are defined as well.


2019 ◽  
Vol 34 (38) ◽  
pp. 1950314 ◽  
Author(s):  
Faizuddin Ahmed

In this work, we investigate the relativistic quantum dynamics of spin-0 particles in the background of (1 + 2)-dimensional Gürses spacetime [M. Gürses, Class. Quantum Grav. 11, 2585 (1994)] with interactions. We solve the Klein–Gordon equation subject to Cornell-type scalar potential in the considered framework, and evaluate the energy eigenvalues and corresponding wave functions, in detail.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Eser Olğar ◽  
Haydar Mutaf

The bound-state solution of s-wave Klein-Gordon equation is calculated for Woods-Saxon potential by using the asymptotic iteration method (AIM). The energy eigenvalues and eigenfunctions are obtained for the required condition of bound-state solutions.


2020 ◽  
Vol 3 (2) ◽  
pp. 240-251
Author(s):  
ES Eyube ◽  
U Wadata ◽  
SD Najoji

We have employed the exact quantization rule to obtain closed form expression for the bound state energy eigenvalues of a molecule in quadratic exponential-type potential. To deal with the spin-orbit centrifugal term of the effective potential energy function, we have used a Pekeris-type approximation scheme, we have also obtained closed form expression for the normalized radial wave functions by solving the Riccati equation with quadratic exponential-type potential. Using our derived energy eigenvalue formula, we have deduced expressions for the bound state energy eigenvalues of the Hulthén, Eckart and Deng-Fan potentials, considered as special cases of the quadratic exponential-type potential. Our deduced energy eigenvalues are in excellent agreement with those in the literature. We have computed bound states energy eigenvalues for six diatomic molecules viz: HCl, LiH, H2, SeH, VH and TiH. Our results are in total agreement with existing results in the literature for the s-wave and in good agreement for higher quantum states. By solving the Riccati equation, we have obtained normalized radial wave functions of the quadratic exponential-type potential, our results show higher probabilities of finding the molecule in the region 0.1 ≤ y ≤ 0.2


Sign in / Sign up

Export Citation Format

Share Document