Demonstration of thin film compression for short-pulse X-ray generation

2019 ◽  
Vol 34 (34) ◽  
pp. 1943015
Author(s):  
D. M. Farinella ◽  
M. Stanfield ◽  
N. Beier ◽  
T. Nguyen ◽  
S. Hakimi ◽  
...  

Thin film compression to the single-cycle regime combined with relativistic compression offers a method to transform conventional ultrafast laser pulses into attosecond X-ray laser pulses. These attosecond X-ray laser pulses are required to drive wakefields in solid density materials which can provide acceleration gradients of up to TeV/cm. Here we demonstrate a nearly 99% energy efficient compression of a 6.63 mJ, 39 fs laser pulse with a Gaussian mode to 20 fs in a single stage. Further, it is shown that as a result of Kerr-lensing, the focal spot of the system is slightly shifted on-axis and can be recovered by translating the imaging system to the new focal plane. This implies that with the help of wave-front shaping optics the focusability of laser pulses compressed in this way can be partially preserved.

2016 ◽  
Vol 09 ◽  
pp. 151-163 ◽  
Author(s):  
Jonathan Wheeler ◽  
Gérard Mourou ◽  
Toshiki Tajima

The implementation of the suggestion of thin film compression (TFC) allows the newest class of high power, ultrafast laser pulses (typically 20[Formula: see text]fs at near-infrared wavelengths) to be compressed to the limit of a single-cycle laser pulse (2[Formula: see text]fs). Its simplicity and high efficiency, as well as its accessibility to a single-cycle laser pulse, introduce a new regime of laser–plasma interaction that enhances laser acceleration. Single-cycle laser acceleration of ions is a far more efficient and coherent process than the known laser-ion acceleration mechanisms. The TFC-derived single-cycle optical pulse is capable of inducing a single-cycle X-ray laser pulse (with a far shorter pulse length and thus an extremely high intensity) through relativistic compression. The application of such an X-ray pulse leads to the novel regime of laser wakefield acceleration of electrons in the X-ray regime, yielding a prospect of “TeV on a chip.” This possibility of single-cycle X-ray pulses heralds zeptosecond and EW lasers (and zeptoscience). The additional invention of the coherent amplification network (CAN) fiber laser pushes the frontier of high repetition, high efficiency lasers, which are the hallmark of needed applications such as laser-driven LWFA colliders and other, societal applications. CAN addresses the crucial aspect of intense lasers that have traditionally lacked the above properties.


2007 ◽  
Vol 3 (1-2) ◽  
pp. 297-301 ◽  
Author(s):  
F. Zamponi ◽  
A. Lübcke ◽  
T. Kämpfer ◽  
I. Uschmann ◽  
E. Förster ◽  
...  
Keyword(s):  
X Ray ◽  

1998 ◽  
Vol 58 (4) ◽  
pp. 4929-4936 ◽  
Author(s):  
B. K. F. Young ◽  
B. G. Wilson ◽  
D. F. Price ◽  
R. E. Stewart

2014 ◽  
Vol 39 (8) ◽  
pp. 2246 ◽  
Author(s):  
Gabriel V. Cojocaru ◽  
Razvan G. Ungureanu ◽  
Romeo A. Banici ◽  
Daniel Ursescu ◽  
Olivier Delmas ◽  
...  

2002 ◽  
Vol 20 (2) ◽  
pp. 321-336 ◽  
Author(s):  
DIMITRI BATANI

The paper reviews and analyses the experiments devoted to the propagation in dense matter of fast electrons produced in the interaction of short-pulse ultra-high-intensity laser pulses with solid density targets.


2004 ◽  
Vol 22 (3) ◽  
pp. 301-306 ◽  
Author(s):  
S.A. GAVRILOV ◽  
D.M. GOLISHNIKOV ◽  
V.M. GORDIENKO ◽  
A.B. SAVEL'EV ◽  
R.V. VOLKOV

Recent results on constructing of an efficient hard X-ray source using solid targets irradiated by high-contrast 200-fs laser pulses with an intensity above 1016W/cm2are presented. We used different solid targets with a laser- and electrochemically modified surface layer: craters, pyramidal cavities, porous silicon, gratings. Experimental data obtained confirms that using solid targets with a corrugated surface one can achieve a prominent increase both in the efficiency of hard X-ray generation (in the quanta range 2–30 keV) and in the hot electron temperature of plasma.


Author(s):  
D. M. Farinella ◽  
M. Stanfield ◽  
N. Beier ◽  
T. Nguyen ◽  
S. Hakimi ◽  
...  
Keyword(s):  

2018 ◽  
Vol 25 (1) ◽  
pp. 68-71 ◽  
Author(s):  
Shigeki Owada ◽  
Kyo Nakajima ◽  
Tadashi Togashi ◽  
Tetsuo Kayatama ◽  
Makina Yabashi

Arrival timing diagnostics performed at a soft X-ray free-electron laser (FEL) beamline of SACLA are described. Intense soft X-ray FEL pulses with one-dimensional focusing efficiently induce transient changes of optical reflectivity on the surface of GaAs. The arrival timing between soft X-ray FEL and optical laser pulses was successfully measured as a spatial position of the reflectivity change. The temporal resolution evaluated from the imaging system reaches ∼10 fs. This method requires only a small portion of the incident pulse energy, which enables the simultaneous operation of the arrival timing diagnostics and experiments by introducing a wavefront-splitting scheme.


Sign in / Sign up

Export Citation Format

Share Document