scholarly journals Logarithmic enhancements in conformal perturbation theory and their real time interpretation

2020 ◽  
Vol 35 (29) ◽  
pp. 2050184
Author(s):  
David Berenstein ◽  
Alexandra Miller

We study various corrections of correlation functions to leading order in conformal perturbation theory, both on the cylinder and on the plane. Many problems on the cylinder are mathematically equivalent to those in the plane if we give the perturbations a position dependent scaling profile. The integrals to be done are then similar to those in the study of correlation functions with one additional insertion at the center of the profile. We will be primarily interested in the divergence structure of these corrections when computed in dimensional regularization. In particular, we show that the logarithmic divergences (enhancements) that show up in the plane under these circumstances can be understood in terms of resonant behavior in time dependent perturbation theory, for a transition between states that is induced by an oscillatory perturbation on the cylinder.

2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Claudius Hubig ◽  
Annabelle Bohrdt ◽  
Michael Knap ◽  
Fabian Grusdt ◽  
Ignacio Cirac

Infinite projected entangled pair states (iPEPS) provide a convenient variational description of infinite, translationally-invariant two-dimensional quantum states. However, the simulation of local excitations is not directly possible due to the translationally-invariant ansatz. Furthermore, as iPEPS are either identical or orthogonal, expectation values between different states as required during the evaluation of non-equal-time correlators are ill-defined. Here, we show that by introducing auxiliary states on each site, it becomes possible to simulate both local excitations and evaluate non-equal-time correlators in an iPEPS setting under real-time evolution. We showcase the method by simulating the t-Jt−J model after a single hole has been placed in the half-filled antiferromagnetic background and evaluating both return probabilities and spin correlation functions, as accessible in quantum gas microscopes.


2019 ◽  
Vol 150 (1) ◽  
pp. 014101 ◽  
Author(s):  
Daniel A. Rehn ◽  
Yuan Shen ◽  
Marika E. Buchholz ◽  
Madan Dubey ◽  
Raju Namburu ◽  
...  

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Y. Ünal ◽  
Ulf-G. Meißner

Abstract We report on the calculation of the CP-violating form factor F3 and the corresponding electric dipole moment for charmed baryons in the spin-1/2 sector generated by the QCD θ-term. We work in the framework of covariant baryon chiral perturbation theory within the extended-on-mass-shell renormalization scheme up to next-to-leading order in the chiral expansion.


Sign in / Sign up

Export Citation Format

Share Document