scholarly journals The generalized Klein–Gordon oscillator with position-dependent mass in a particular Gödel-type space–time

2021 ◽  
Vol 36 (03) ◽  
pp. 2150023
Author(s):  
Yi Yang ◽  
Zheng-Wen Long ◽  
Qi-Kang Ran ◽  
Hao Chen ◽  
Zi-Long Zhao ◽  
...  

The relativistic quantum dynamics of the generalized Klein–Gordon (KG) oscillator having position-dependent mass in the Gödel-type space–time is investigated. We have presented the generalized KG oscillator in this space–time, and discussed the effect of Cornell potential and linear potential for our considered system. The modification from the parameters of position-dependent mass and characterizing the space–time for the energy spectrums are presented.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Faizuddin Ahmed

In this paper, we investigate the relativistic quantum dynamics of spin-0 massive charged particle subject to a homogeneous magnetic field in the Gödel-type space-time with potentials. We solve the Klein-Gordon equation subject to a homogeneous magnetic field in a topologically trivial flat class of Gödel-type space-time in the presence of Cornell-type scalar and Coulomb-type vector potentials and analyze the effects on the energy eigenvalues and eigenfunctions.


2018 ◽  
Vol 15 (10) ◽  
pp. 1850165 ◽  
Author(s):  
Mansoureh Hosseinpour ◽  
Hassan Hassanabadi ◽  
Marc de Montigny

We study the relativistic quantum dynamics of a Klein–Gordon scalar field subject to a Cornell potential in spinning cosmic-string space-time, in order to better understand the effects of gravitational fields produced by topological defects on the scalar field. We solve the Klein–Gordon equation in the presence of scalar and vector interactions by utilizing the Nikiforov–Uvarov formalism and two ansätze, one of which leads to a biconfluent Heun differential equation. We obtain the wave-functions and the energy levels of the relativistic field in that space-time. We discuss the effect of various physical parameters and quantum numbers on the wave-functions.


2018 ◽  
Vol 33 (04) ◽  
pp. 1850025 ◽  
Author(s):  
Bing-Qian Wang ◽  
Zheng-Wen Long ◽  
Chao-Yun Long ◽  
Shu-Rui Wu

A spinless particle coupled covariantly to a uniform magnetic field parallel to the string in the background of the rotating cosmic string is studied. The energy levels of the electrically charged particle subject to the Klein–Gordon oscillator are analyzed. Afterwards, we consider the case of the position-dependent mass and show how these energy levels depend on the parameters in the problem. Remarkably, it shows that for the special case, the Klein–Gordon oscillator coupled covariantly to a homogeneous magnetic field with the position-dependent mass in the rotating cosmic string background has the similar behaviors to the Klein–Gordon equation with a Coulomb-type configuration in a rotating cosmic string background in the presence of an external magnetic field.


Sign in / Sign up

Export Citation Format

Share Document