Rotating frame effects and potential on a relativistic scalar particle in Kaluza–Klein theory

Author(s):  
Faizuddin Ahmed

The effects of uniform rotation on a relativistic scalar particle that interacts with a Cornell-type potential in background space–time described by the Kaluza–Klein theory are analyzed and the gravitational analogue of the Aharonov–Bohm effect is observed. Furthermore, linear confinement of a relativistic scalar particle was also discussed. We see a coupling between the angular velocity of the rotating frame [Formula: see text] and the angular momentum eigenvalue [Formula: see text] which shows the Sagnac-type effect.

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
E. V. B. Leite ◽  
H. Belich ◽  
K. Bakke

Based on the Kaluza-Klein theory, we study the Aharonov-Bohm effect for bound states for a relativistic scalar particle subject to a Coulomb-type potential. We introduce this scalar potential as a modification of the mass term of the Klein-Gordon equation, and a magnetic flux through the line element of the Minkowski spacetime in five dimensions. Then, we obtain the relativistic bound states solutions and calculate the persistent currents.


2000 ◽  
Vol 15 (04) ◽  
pp. 253-258 ◽  
Author(s):  
CLÁUDIO FURTADO ◽  
V. B. BEZERRA ◽  
FERNANDO MORAES

Using Kaluza-Klein theory we study the quantum mechanics of a scalar particle in the background of a chiral cosmic string and of a magnetic cosmic string. We show that the wave functions and the energy spectra associated with the particle depend on the global features of those space–times. These dependences represent the analogs of the well-known Aharonov–Bohm effect. This effect appears as the sum of two contributions, one of gravitational origin and the other of electromagnetic origin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Faizuddin Ahmed

AbstractIn this paper, we solve generalized KG-oscillator interacts with a uniform magnetic field in five-dimensional space-time background produced by topological defects under a linear confining potential using the Kaluza–Klein theory. We solve this equation and analyze an analogue of the Aharonov–Bohm effect for bound states. We observe that the energy level for each radial mode depend on the global parameters characterizing the space-time, the confining potential, and the magnetic field which shows a quantum effect.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
E.V. B. Leite ◽  
H. Belich ◽  
R. L. L. Vitória

In this paper, we have investigated a scalar particle with position-dependent mass subject to a uniform magnetic field and a quantum flux, both coming from the background which is governed by the Kaluza-Klein theory. By modifying the mass term of the scalar particle, we insert the Cornell-type potential. In the search for solutions of bound states, we determine the relativistic energy profile of the system in this background of extra dimension. Particular cases of this system are analyzed and a quantum effect can be observed: the dependence of the magnetic field on the quantum numbers of the solutions.


1986 ◽  
Vol 96 (1) ◽  
pp. 41-50 ◽  
Author(s):  
J. A. Ferrari ◽  
J. Griego

2019 ◽  
Vol 34 (38) ◽  
pp. 1950319 ◽  
Author(s):  
E. V. B. Leite ◽  
R. L. L. Vitória ◽  
H. Belich

Through the Kaluza–Klein theory, we investigate the quantum dynamics of a Klein–Gordon particle under the Aharonov–Bohm effect for bound states, where it is subject to the linear and Coulomb-type central potentials inserted in the Klein–Gordon equation by modification of the mass term. Then, we determine analytically solutions of bound states and the energy profile of the scalar particle in this background.


1986 ◽  
Vol 173 (2) ◽  
pp. 149-153 ◽  
Author(s):  
A. Heil ◽  
N.A. Papadopoulos ◽  
B. Reifenhäuser ◽  
F. Scheck

Sign in / Sign up

Export Citation Format

Share Document