ANOMALOUS GAUSS LAW ALGEBRAS

1989 ◽  
Vol 04 (17) ◽  
pp. 4581-4591 ◽  
Author(s):  
R. FLOREANINI ◽  
R. PERCACCI

Supplementing the Gauss law operator of an anomalous gauge theory with a certain set of functionals of the gauge potentials, one obtains a closed algebra. The algebras obtained in this way are Abelian extensions of the Lie algebra of the group of gauge transformations, and are natural generalizations of Kac-Moody algebras, both in two and four dimensions.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. I. Buchbinder ◽  
D. Hutchings ◽  
S. M. Kuzenko ◽  
M. Ponds

Abstract Within the framework of $$ \mathcal{N} $$ N = 1 anti-de Sitter (AdS) supersymmetry in four dimensions, we derive superspin projection operators (or superprojectors). For a tensor superfield $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)}:= {\mathfrak{V}}_{\left(\alpha 1\dots \alpha m\right)\left({\overset{\cdot }{\alpha}}_1\dots {\overset{\cdot }{\alpha}}_n\right)} $$ V α m α ⋅ n ≔ V α 1 … αm α ⋅ 1 … α ⋅ n on AdS superspace, with m and n non-negative integers, the corresponding superprojector turns $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)} $$ V α m α ⋅ n into a multiplet with the properties of a conserved conformal supercurrent. It is demonstrated that the poles of such superprojectors correspond to (partially) massless multiplets, and the associated gauge transformations are derived. We give a systematic discussion of how to realise the unitary and the partially massless representations of the $$ \mathcal{N} $$ N = 1 AdS4 superalgebra $$ \mathfrak{osp} $$ osp (1|4) in terms of on-shell superfields. As an example, we present an off-shell model for the massive gravitino multiplet in AdS4. We also prove that the gauge-invariant actions for superconformal higher-spin multiplets factorise into products of minimal second-order differential operators.


2014 ◽  
Vol 92 (9) ◽  
pp. 1033-1042 ◽  
Author(s):  
S. Gupta ◽  
R. Kumar ◽  
R.P. Malik

In the available literature, only the Becchi–Rouet–Stora–Tyutin (BRST) symmetries are known for the Jackiw–Pi model of the three (2 + 1)-dimensional (3D) massive non-Abelian gauge theory. We derive the off-shell nilpotent [Formula: see text] and absolutely anticommuting (sbsab + sabsb = 0) (anti-)BRST transformations s(a)b corresponding to the usual Yang–Mills gauge transformations of this model by exploiting the “augmented” superfield formalism where the horizontality condition and gauge invariant restrictions blend together in a meaningful manner. There is a non-Yang–Mills (NYM) symmetry in this theory, too. However, we do not touch the NYM symmetry in our present endeavor. This superfield formalism leads to the derivation of an (anti-)BRST invariant Curci–Ferrari restriction, which plays a key role in the proof of absolute anticommutativity of s(a)b. The derivation of the proper anti-BRST symmetry transformations is important from the point of view of geometrical objects called gerbes. A novel feature of our present investigation is the derivation of the (anti-)BRST transformations for the auxiliary field ρ from our superfield formalism, which is neither generated by the (anti-)BRST charges nor obtained from the requirements of nilpotency and (or) absolute anticommutativity of the (anti-)BRST symmetries for our present 3D non-Abelian 1-form gauge theory.


2015 ◽  
Author(s):  
Fiki T. Akbar ◽  
Bobby E. Gunara ◽  
Freddy P. Zen ◽  
Triyanta

1982 ◽  
Vol 26 (8) ◽  
pp. 2166-2168 ◽  
Author(s):  
Michael Creutz ◽  
K. J. M. Moriarty

1989 ◽  
Vol 04 (10) ◽  
pp. 971-982
Author(s):  
J. AVAN

A set of conformally covariant dressing transformations is constructed for the supersym-metric N=3 self-duality equations in four dimensions, using the associated covariant linear system. They form a closed, 5+6-index algebra, up to field-dependent gauge transformations, containing the previously known loop algebras as a particular subset. This construction generalizes the formerly built set of conformally covariant DT for ordinary self-dual Yang-Mills.


Axioms ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 24
Author(s):  
Marta Dudek ◽  
Janusz Garecki

In this paper, we show that the general relativity action (and Lagrangian) in recent Einstein–Palatini formulation is equivalent in four dimensions to the action (and Langrangian) of a gauge field. First, we briefly showcase the Einstein–Palatini (EP) action, and then we present how Einstein fields equations can be derived from it. In the next section, we study Einstein–Palatini action integral for general relativity with a positive cosmological constant Λ in terms of the corrected curvature Ω c o r . We see that in terms of Ω c o r this action takes the form typical for a gauge field. Finally, we give a geometrical interpretation of the corrected curvature Ω c o r .


2006 ◽  
Vol 21 (31) ◽  
pp. 6477-6490 ◽  
Author(s):  
CONSTANTIN BIZDADEA ◽  
EUGEN-MIHĂIŢĂ CIOROIANU ◽  
SILVIU CONSTANTIN SĂRARU

Consistent interactions that can be added to a free, Abelian gauge theory comprising a collection of BF models and a set of three-form gauge fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of smooth, local, PT invariant, Lorentz covariant, and Poincaré invariant interactions, supplemented with the requirement on the preservation of the number of derivatives on each field with respect to the free theory, we obtain that the deformation procedure modifies the Lagrangian action, the gauge transformations as well as the accompanying algebra.


1983 ◽  
Vol 28 (8) ◽  
pp. 2101-2103 ◽  
Author(s):  
D. Barkai ◽  
M. Creutz ◽  
K. J. M. Moriarty

2015 ◽  
Vol 91 (6) ◽  
Author(s):  
F. S. Gama ◽  
M. Gomes ◽  
J. R. Nascimento ◽  
A. Yu. Petrov ◽  
A. J. da Silva

Sign in / Sign up

Export Citation Format

Share Document