ON THE DYNAMICS OF SPHERICALLY SYMMETRIC SYSTEMS IN QUANTUM GRAVITY

1991 ◽  
Vol 06 (06) ◽  
pp. 1017-1029 ◽  
Author(s):  
C.O. LOUSTO ◽  
F.D. MAZZITELLI

Within the formalism of quantum gravity, we consider a general metric with spherical symmetry and study under which circumstances it is possible to consistently reduce the number of degrees of freedom of the theory. In the case of separation of variables, we show that only the Kantowski-Sachs and Robertson-Walker geometries are consistent minisuperspaces. We analyze some minisuperspaces adequate for the study of the black hole physics, but we find that they are either trivial or inconsistent.

2005 ◽  
Vol 14 (12) ◽  
pp. 2301-2305
Author(s):  
JOHN SWAIN

Black hole thermodynamics suggests that the maximum entropy that can be contained in a region of space is proportional to the area enclosing it rather than its volume. We argue that this follows naturally from loop quantum gravity and a result of Kolmogorov and Bardzin' on the the realizability of networks in three dimensions. This represents an alternative to other approaches in which some sort of correlation between field configurations helps limit the degrees of freedom within a region. It also provides an approach to thinking about black hole entropy in terms of states inside rather than on its surface. Intuitively, a spin network complicated enough to imbue a region with volume only lets that volume grow as quickly as the area bounding it.


2005 ◽  
Vol 20 (14) ◽  
pp. 3128-3131 ◽  
Author(s):  
B. F. L. WARD

We use exact results in a new approach to quantum gravity to discuss some issues in black hole physics.


2010 ◽  
Vol 19 (12) ◽  
pp. 2003-2009 ◽  
Author(s):  
POURIA PEDRAM

Various candidates of quantum gravity such as string theory, loop quantum gravity and black hole physics all predict the existence of a minimum observable length which modifies the Heisenberg uncertainty principle to the so-called generalized uncertainty principle (GUP). This approach results from the modification of the commutation relations and changes all Hamiltonians in quantum mechanics. In this paper, we present a class of physically acceptable solutions for a general commutation relation without directly solving the corresponding generalized Schrödinger equations. These solutions satisfy the boundary conditions and exhibit the effect of the deformed algebra on the energy spectrum. We show that this procedure prevents us from doing equivalent but lengthy calculations.


Author(s):  
Rodolfo Gambini ◽  
Javier Olmedo ◽  
Jorge Pullin

We continue our investigation of an improved quantization scheme for spherically symmetric loop quantum gravity. We find that in the region where the black hole singularity appears in the classical theory, the quantum theory contains semi-classical states that approximate general relativity coupled to an effective anisotropic fluid. The singularity is eliminated and the space-time can be continued into a white hole space-time. This is similar to previously considered scenarios based on a loop quantum gravity quantization.


Author(s):  
Lautaro Amadei ◽  
Hongguang Liu ◽  
Alejandro Perez

In approaches to quantum gravity, where smooth spacetime is an emergent approximation of a discrete Planckian fundamental structure, any effective smooth field theoretical description would miss part of the fundamental degrees of freedom and thus break unitarity. This is applicable also to trivial gravitational field (low energy) idealizations realized by the use of Minkowski background geometry which, as with any other spacetime geometry, corresponds, in the fundamental description, to infinitely many different and closely degenerate discrete microstates. The existence of such microstates provides a large reservoir q-bit for information to be coded at the end of black hole evaporation and thus opens the way to a natural resolution of the black hole evaporation information puzzle. In this paper we show that these expectations can be made precise in a simple quantum gravity model for cosmology motivated by loop quantum gravity. Concretely, even when the model is fundamentally unitary, when microscopic degrees of freedom irrelevant to low-energy cosmological observers are suitably ignored, pure states in the effective description evolve into mixed states due to decoherence with the Planckian microscopic structure. Moreover, in the relevant physical regime these hidden degrees of freedom do not carry any “energy” and thus realize, in a fully quantum gravitational context, the idea (emphasized before by Unruh and Wald) that decoherence can take place without dissipation, now in a concrete gravitational model strongly motivated by quantum gravity. All this strengthens the perspective of a quite conservative and natural resolution of the black hole evaporation puzzle where information is not destroyed but simply degraded (made unavailable to low-energy observers) into correlations with the microscopic structure of the quantum geometry at the Planck scale.


Author(s):  
Muxin Han ◽  
Hongguang Liu

Abstract We propose a new model of the spherical symmetric quantum black hole in the reduced phase space formulation. We deparametrize gravity by coupling to the Gaussian dust which provides the material coordinates. The foliation by dust coordinates covers both the interior and exterior of the black hole. After the spherical symmetry reduction, our model is a 1+1 dimensional field theory containing infinitely many degrees of freedom. The effective dynamics of the quantum black hole is generated by an improved physical Hamiltonian ${\bf H}_\Delta$. The holonomy correction in ${\bf H}_\Delta$ is implemented by the $\bar{\mu}$-scheme regularization with a Planckian area scale $\Delta$ (which often chosen as the minimal area gap in Loop Quantum Gravity). The effective dynamics recovers the semiclassical Schwarzschild geometry at low curvature regime and resolves the black hole singularity with Planckian curvature, e.g. $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}\sim 1/{\Delta}^2$. Our model predicts that the evolution of the black hole at late time reaches the charged Nariai geometry ${\rm dS}_2\times S^2$ with Planckian radii $\sim \sqrt{\Delta}$. The Nariai geometry is stable under linear perturbations but may be unstable by nonperturbative quantum effects. Our model suggests the existence of quantum tunneling of the Nariai geometry and a scenario of black-hole-to-white-hole transition.


1999 ◽  
Vol 14 (24) ◽  
pp. 1667-1672 ◽  
Author(s):  
T. PADMANABHAN

The question of how tightly one can constrain the microscopic theory of quantum gravity from the known features of low energy gravity is addressed. To begin with, from the very fact that our universe made a transition from a quantum regime to classical one, it is possible to conclude that infinite number of degrees of freedom had to be integrated out from the fundamental theory to obtain the low energy Einstein Lagrangian. Further constraints can be imposed from the fact that the quantum state describing a black hole has to possess certain universal form of density of states, in any microscopic description of space–time, which can be ascertained from general considerations. Since a black hole can be formed from the collapse of any physical system with a low energy (E ≪ Ep) Hamiltonian H, it is possible to obtain the form the effective high energy (E ≫ Ep) Hamiltonian from general consideration. These results provide the physical reasons for some of the mathematical features underlying string theories and other models for quantum gravity.


2017 ◽  
Vol 26 (05) ◽  
pp. 1741018 ◽  
Author(s):  
Muhammad Rizwan ◽  
K. Saifullah

When quantum gravity effects, that are based on generalized uncertainty principle with a minimal measurable length, are incorporated into black hole physics the Klein–Gordon and Dirac equations get modified. Using these modified equations we investigate tunneling of scalar particles and fermions from event and acceleration horizons of accelerating and rotating black holes and obtain the modified Hawking temperature with quantum gravity effects. We see that Hawking temperature depends on black hole parameters as well as the quantum numbers of emitted fermions. The quantum corrections slow down black hole evaporation and leave a black hole remnant. This contradicts complete evaporation of a black hole which is presaged by the standard temperature formula for black holes. The modified Hawking temperatures presented here, in appropriate limits, are consistent with the previous results in the literature.


2019 ◽  
Vol 28 (03) ◽  
pp. 1930006 ◽  
Author(s):  
Anna Nakonieczna ◽  
Łukasz Nakonieczny ◽  
Dong-Han Yeom

In this review paper, we comprehensively summarize numerical applications of double-null formalism for studying dynamics within the theory of gravity. By using the double-null coordinates, we can investigate dynamical black holes and gravitational phenomena within spherical symmetry, including gravitational collapse, formation of horizons and singularities, as well as evaporations. This formalism can be extended to generic situations, where we can change dimensions, topologies, the gravity sector, as well as the matter sector. We also discuss its possible implications for black hole physics and particle astrophysics. This strong numerical tool will have lots of future applications for various research areas including general relativity, string theory and various approaches to quantum gravity.


Sign in / Sign up

Export Citation Format

Share Document