Microcosmos and Macrocosmos: A Look at these Two Universes in a Unified Way

1997 ◽  
Vol 12 (07) ◽  
pp. 1373-1384 ◽  
Author(s):  
P. R. Silva

An extension of the MIT bag model, developed to describe the strong interaction inside the hadronic matter (nucleons), is proposed as a means to account for the confinement of matter in the universe. The basic hypotheses of the MIT bag model are worked out in a very simplified way and are also translated in terms of the gravitational force. We call the nucleon "microcosmos" and the bag-universe "macrocosmos." We have found a vacuum pressure of 10-15 atm at the boundary of the bag-universe as compared with a pressure of 1029 atm at the boundary of the nucleon. Both universes are also analyzed in the light of Sciama's theory of inertia, which links the inertial mass of a body to its interaction with the rest of the universe. One of the consequences of this work is that the Weinberg mass can be interpreted as a threshold mass, namely the mass where the frequency of the small oscillations of a particle coupled to the universe matches its de Broglie frequency. Finally, we estimate an averaged density of matter in the universe, corresponding to [Formula: see text] of the critical or closure density.

2015 ◽  
Vol 8 (1) ◽  
pp. 1976-1981
Author(s):  
Casey McMahon

The principle postulate of general relativity appears to be that curved space or curved spacetime is gravitational, in that mass curves the spacetime around it, and that this curved spacetime acts on mass in a manner we call gravity. Here, I use the theory of special relativity to show that curved spacetime can be non-gravitational, by showing that curve-linear space or curved spacetime can be observed without exerting a gravitational force on mass to induce motion- as well as showing gravity can be observed without spacetime curvature. This is done using the principles of special relativity in accordance with Einstein to satisfy the reader, using a gravitational equivalence model. Curved spacetime may appear to affect the apparent relative position and dimensions of a mass, as well as the relative time experienced by a mass, but it does not exert gravitational force (gravity) on mass. Thus, this paper explains why there appears to be more gravity in the universe than mass to account for it, because gravity is not the resultant of the curvature of spacetime on mass, thus the “dark matter” and “dark energy” we are looking for to explain this excess gravity doesn’t exist.


Author(s):  
Salil Joshi ◽  
Sovan Sau ◽  
Soma Sanyal
Keyword(s):  

1983 ◽  
Vol 27 (11) ◽  
pp. 2708-2714 ◽  
Author(s):  
P. J. Mulders ◽  
G. Bhamathi ◽  
L. Heller ◽  
A. T. Aerts ◽  
A. K. Kerman
Keyword(s):  

1977 ◽  
Vol 40 (2) ◽  
pp. 135-140 ◽  
Author(s):  
J. Katz ◽  
S. Tatur
Keyword(s):  

Author(s):  
P. J. E. Peebles

This chapter presents the full relativistic analysis of the evolution of mass clustering. The full relativistic theory is needed to deal with three important aspects of density irregularities in the early universe. First, when the pressure is high the relativistic active gravitational mass and inertial mass associated with pressure affect the dynamics. Second, when the mean density is high, a fluctuation of even modest fractional amount containing a modest mass can have a large effect on the space curvature. One is thus led to deal with the interaction of speculations on the nature of the mass distribution and of the geometry in the early universe. Third, the horizon shrinks to zero at the time of the big bang: the seed fluctuations out of which galaxies might form were larger than the horizon and so were not in causal connection reckoned from the time of the big bang. Of course, this curious point applies as well to the homogeneous background: it was somehow contrived that all parts of the universe now visible were set expanding with quite precise uniformity even though an observer could not have discovered this much before the present epoch.


Sign in / Sign up

Export Citation Format

Share Document