HOW REAL ARE QUANTONS?

2004 ◽  
Vol 18 (04n05) ◽  
pp. 565-574
Author(s):  
MARCELLO CINI

In spite of the recent extraordinary progresses of experimental techniques it does not seem that, after more than seventy years from the birth of quantum mechanics, a unanimous consensus has been reached in the physicist's community on how to understand the "strange" properties of quantons, the wavelike/particlelike objects of the quantum world. In the first paragraph I will briefly recall some results on the problem of decoherence in large quantum systems, which at the same time may be viewed as an attempt of providing a "realistic" physical interpretation of the standard mathematical formulation of the theory. In the following ones I will present a derivation from first principles of the Wigner representation of quantum mechanics in phase space which eliminates altogether from the theory the Schrödinger waves and their questionable properties. This approach leads to the conclusion that the wave/particle duality has nothing to do with "probability waves", but is simply the manifestation of two complementary aspects (continuity vs. discontinuity) of an intrinsically nonlocal physical entity (the quantum field) which objectively exists in ordinary three dimensional space.

2021 ◽  
Author(s):  
Kaushal R Purohit ◽  
Rajendrasinh H PARMAR ◽  
Ajay Kumar Rai

Abstract Using the Qiang-Dong proper quantization rule (PQR) and the supersymmetric quantum mechanics approach, we obtained the eigenspectrum of the energy and momentum for time independent and time dependent Hulthen-screened cosine Kratzer potentials. For the suggested time independent Hulthen-screened cosine Kratzer potential, we solved the Schrodinger equation in D dimensions (HSCKP). The Feinberg-Horodecki equation for time-dependent Hulthen-screened cosine Kratzer potential was also solved (tHSCKP). To address the inverse square term in the time independent and time dependent equations, we employed the Greene-Aldrich approximation approach. We were able to extract time independent and time dependent potentials, as well as their accompanying energy and momentum spectra. In three-dimensional space, we estimated the rotational vibrational (RV) energy spectrum for many homodimers ($H_2, I_2, O_2$) and heterodimers ($MnH, ScN, LiH, HCl$). We also used the recently introduced formula approach to obtain the relevant eigen function. We also calculated momentum spectra for the dimers $MnH$ and $ScN$. The method is compared to prior methodologies for accuracy and validity using numerical data for heterodimer $LiH, HCl$ and homodimer $I_2, O_2,H_2$. The calculated energy and momentum spectra are tabulated and analysed.


2020 ◽  
Vol 10 (4) ◽  
pp. 40-54
Author(s):  
Yi-Fang Chang ◽  

Based on Dirac’s negative energy, we propose and study the negative matter. Bondi’s results are wrong. First, the negative matter can be the simplest model of unified dark matter and dark energy. Next, we discuss various possible theories of the negative matter: some field equations, similar electrodynamics, field equations with non-symmetry, etc. Third, the quantum theory of negative matter is researched. Matter surrounded by dark-negative matter corresponds to an infinitely deep potential trap in quantum mechanics and forms a base of the universal wave-particle duality and quantum mechanics. Fourth, we propose the mechanism of inflation as the origin of positive-negative matters created from nothing. Fifth, assume that dark matter is completely the negative matter, and we may calculate an evolutional ratio between total matter and usual matter from 1 of inflation and the radiation-dominated universe to 7.88 of the present matter-dominated universe. It agrees with the observed value 6.36~7. Sixth, we research the relativity of the negative matter and theory in Lobachevskian geometry. Seventh, we propose a judgment test of the negative matter as dark matter is opposite repulsive lensing and other eight possible tests. Eighty, we propose a figure on the unification of the four basic interactions in three-dimensional space, in which the “running” coupling constants of strong and weak interactions transform each other. The negative matter as a candidate of unification of dark matter and dark energy is not only the simplest, and may explain inflation and be calculated and tested.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document