DIAGONALIZATION OF A HAMILTONIAN DESCRIBING A SINGLE TWO-LEVEL ATOM INTERACTING WITH A TWO MODE AMPLIFIER

2007 ◽  
Vol 21 (02) ◽  
pp. 211-220 ◽  
Author(s):  
PAUL BRACKEN

A Hamiltonian which describes the interaction of a single atom with two photon modes is introduced. It is shown that the Hamiltonian can be diagonalized in a particular basis. The energies and an eigenvector basis set are obtained. Some quasi-probability densities are calculated using amplitudes determined with respect to the rotated basis. Some of the physical phenomena which are manifested in the calculations are discussed.

1994 ◽  
Vol 49 (5) ◽  
pp. 4009-4015 ◽  
Author(s):  
Lin-sheng He ◽  
Xun-li Feng

1997 ◽  
Vol 46 (9) ◽  
pp. 1718
Author(s):  
FENG XUN-LI ◽  
HE LIN-SHENG ◽  
LIU YONG-LIANG

2013 ◽  
Vol 27 (31) ◽  
pp. 1350226
Author(s):  
JI HUI TENG ◽  
HONG FU WANG ◽  
XUE XI YI

The emission spectrum of a single atom inside an optomechanical cavity is studied in this paper. Our model consists of a single two-level atom coupled to a cavity with a moving end mirror. We numerically calculate the emission spectrum of the atom, taking the effect of the moving mirror into account. The dependence of the spectrum peak on the coupling between the moving mirror and the cavity field is analyzed. For weak cavity-mirror couplings, we expand the spectrum up to the first order of the coupling constant.


1983 ◽  
Vol 13 (10) ◽  
pp. 1341-1346
Author(s):  
A G Bakhtadze ◽  
V M Vetsko ◽  
Andrei N Starostin ◽  
T R Khukhunashvili

1992 ◽  
Vol 06 (12) ◽  
pp. 729-736
Author(s):  
AMITABH JOSHI ◽  
S. V. LAWANDE

The fluorescence spectrum produced by a two-photon Jaynes-Cummings model (JCM) has been analyzed using the infinity of transitions among the dressed states of its Hamiltonian. A large number of resonances in the spectra are observed which are sensitive to the mean photon numbers of the quantized coherent field. Also, the qualitative nature of these spectra are in contrast to that of the corresponding spectra of standard JCM.


2003 ◽  
Vol 17 (30) ◽  
pp. 5795-5810 ◽  
Author(s):  
R. A. ZAIT

We study the dynamics and quantum characteristics of a single two-level atom interacting with a single mode cavity field undergoing a multi-photon processes in the presence of a nonlinear Kerr-like medium. The wavefunctions of the multi-photon system are obtained when the atom starts in the excited and in the ground state. The atomic inversion, the squeezing of the radiation field and the quasiprobability distribution Q-function of the field are discussed. Numerical results for these characteristics are presented when the atom starts in the excited state and the field mode in a coherent state. The influence of the presence and absence of the number operator and the Kerr medium for the one- and two-photon processes on the evolution of these characteristics are analyzed.


2011 ◽  
Vol 25 (03) ◽  
pp. 417-431
Author(s):  
DEBRAJ NATH ◽  
P. K. DAS

In this paper we discuss an extension of Jaynes–Cummings model by adding a further atomic level to support a second resonance and cooperative effects in multi-atom systems. A successive passage of a three-level atom in the V configuration interacting with one quantized mode of electromagnetic field in a cavity will be considered to study atomic inversion and entropy evolution of the state.


Sign in / Sign up

Export Citation Format

Share Document