T–S FUZZY ADAPTIVE DELAYED FEEDBACK SYNCHRONIZATION FOR TIME-DELAYED CHAOTIC SYSTEMS WITH UNCERTAIN PARAMETERS

2011 ◽  
Vol 25 (23n24) ◽  
pp. 3253-3267 ◽  
Author(s):  
CHOON KI AHN ◽  
PYUNG SOO KIM

In this paper, we propose a new adaptive synchronization method, called a fuzzy adaptive delayed feedback synchronization (FADFS) method, for time-delayed chaotic systems with uncertain parameters. An FADFS controller that is based on the Lyapunov–Krasovskii theory, Takagi–Sugeno (T–S) fuzzy model, and delayed feedback control is developed to guarantee adaptive synchronization. The proposed controller can be obtained by solving the linear matrix inequality (LMI) problem. A numerical example using a time-delayed Lorenz system is discussed to assess the validity of the proposed FADFS method.

2010 ◽  
Vol 24 (02) ◽  
pp. 211-224 ◽  
Author(s):  
CHOON KI AHN ◽  
JUNG HUN PARK

In this letter, we propose a new [Formula: see text] synchronization method, called a delayed feedback fuzzy [Formula: see text] synchronization (DFFHS) method, for time-delayed chaotic systems with external disturbance. Based on Lyapunov–Krasovskii theory, T–S fuzzy model, and delayed feedback control scheme, the DFFHS controller is presented to not only guarantee aymptotical synchronization but also reduce the effect of external disturbance to an [Formula: see text] norm constraint. The proposed controller can be obtained by solving the linear matrix inequality (LMI) problem. A numerical example for time-delayed Lorenz system is presented to demonstrate the validity of the proposed DFFHS method.


2019 ◽  
Vol 26 (9-10) ◽  
pp. 643-645
Author(s):  
Xuefeng Zhang

This article shows that sufficient conditions of Theorems 1–3 and the conclusions of Lemmas 1–2 for Takasi–Sugeno fuzzy model–based fractional order systems in the study “Takagi–Sugeno fuzzy control for a wide class of fractional order chaotic systems with uncertain parameters via linear matrix inequality” do not hold as asserted by the authors. The reason analysis is discussed in detail. Counterexamples are given to validate the conclusion.


2012 ◽  
Vol 22 (06) ◽  
pp. 1250147 ◽  
Author(s):  
KE DING ◽  
QING-LONG HAN

Some mathematical models in engineering and physics, such as rotating pendulums, governors and phase locked loops in circuits, can be described as nonautonomous systems in which there exist chaotic attractors. This paper investigates master-slave synchronization for two nonautonomous chaotic systems by using time-delayed feedback control. Firstly, three delay-dependent synchronization criteria, which are formulated in the form of linear matrix inequalities (LMIs), are established for complete synchronization, lag synchronization and anticipating synchronization, respectively. Secondly, sufficient conditions on the existence of a time-delayed feedback controller are derived by employing these newly-obtained synchronization criteria. The controller gain can be obtained by solving a set of LMIs. Finally, the synchronization criteria and the design method are applied to master-slave synchronization for rotating pendulum systems.


2011 ◽  
Vol 66 (3-4) ◽  
pp. 151-160
Author(s):  
Choon Ki Ahn

In this paper, we propose a newH∞ synchronization method for fuzzy model based chaotic systems with external disturbance and time-varying delay. Based on Lyapunov-Krasovskii theory, Takagi- Sugeno (TS) fuzzy model, and linear matrix inequality (LMI) approach, the H∞ synchronization controller is presented to not only guarantee stable synchronization but also reduce the effect of external disturbance to an H∞ norm constraint. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. A simulation study is presented to demonstrate the validity of the proposed approach.


2005 ◽  
Vol 15 (02) ◽  
pp. 689-695
Author(s):  
KEIJI KONISHI

This paper presents a simple numerical scheme for estimating the attraction region of a fixed point in one-dimensional discrete-time chaotic systems controlled by the delayed-feedback method. This scheme employs the well-known linear matrix inequality approach. A systematic procedure for estimating the region is provided, and numerical examples are used to validate the results.


2019 ◽  
Vol 29 (14) ◽  
pp. 1950197 ◽  
Author(s):  
P. D. Kamdem Kuate ◽  
Qiang Lai ◽  
Hilaire Fotsin

The Lorenz system has attracted increasing attention on the issue of its simplification in order to produce the simplest three-dimensional chaotic systems suitable for secure information processing. Meanwhile, Sprott’s work on elegant chaos has revealed a set of 19 chaotic systems all described by simple algebraic equations. This paper presents a new piecewise-linear chaotic system emerging from the simplification of the Lorenz system combined with the elegance of Sprott systems. Unlike the majority, the new system is a non-Shilnikov chaotic system with two nonhyperbolic equilibria. It is multiplier-free, variable-boostable and exclusively based on absolute value and signum nonlinearities. The use of familiar tools such as Lyapunov exponents spectra, bifurcation diagrams, frequency power spectra as well as Poincaré map help to demonstrate its chaotic behavior. The novel system exhibits inverse period doubling bifurcations and multistability. It has only five terms, one bifurcation parameter and a total amplitude controller. These features allow a simple and low cost electronic implementation. The adaptive synchronization of the novel system is investigated and the corresponding electronic circuit is presented to confirm its feasibility.


2021 ◽  
pp. 107754632110069
Author(s):  
Parvin Mahmoudabadi ◽  
Mahsan Tavakoli-Kakhki

In this article, a Takagi–Sugeno fuzzy model is applied to deal with the problem of observer-based control design for nonlinear time-delayed systems with fractional-order [Formula: see text]. By applying the Lyapunov–Krasovskii method, a fuzzy observer–based controller is established to stabilize the time-delayed fractional-order Takagi–Sugeno fuzzy model. Also, the problem of disturbance rejection for the addressed systems is studied via the state-feedback method in the form of a parallel distributed compensation approach. Furthermore, sufficient conditions for the existence of state-feedback gains and observer gains are achieved in the terms of linear matrix inequalities. Finally, two numerical examples are simulated for the validation of the presented methods.


Sign in / Sign up

Export Citation Format

Share Document