ELECTRICAL CONDUCTIVITY AND DIELECTRIC RELAXATION STUDY OF POLYVINYL ACETATE/POLY METHYL METHACRYLATE BLENDS

2012 ◽  
Vol 26 (29) ◽  
pp. 1250159 ◽  
Author(s):  
R. M. AHMED

Transparent films of PMMA (poly methyl methacrylate), PVAc (polyvinyl acetate) and their blends, have been prepared by using a solution-casting technique. The dielectric properties and the electrical conductivity are reported. The frequency and temperature dependence of the dielectric constant, ε′ and tan δ, have been investigated for the studied samples in the frequency range from 1 kHz to 5 MHz and over a range of temperature from 303–413 K. In addition, AC conductivity values were calculated from the dielectric data and the conduction mechanism is discussed. The frequency-dependent conductivity behavior at different temperatures provides a qualitative description of the conduction mechanism. Also, differential scanning calorimetry (DSC) scans have been measured for the studied samples.

2021 ◽  
pp. 096739112110147
Author(s):  
Ufuk Abaci ◽  
H Yuksel Guney ◽  
Mesut Yilmazoglu

The effect of plasticizer on dielectric properties of poly(methyl methacrylate) (PMMA)/titanium dioxide (TiO2) composites was investigated. Propylene carbonate (PC) was used as plasticizer in the samples which were prepared with the conventional solvent casting technique. Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDX) and Differential scanning calorimetry (DSC) analyses and LCR Meter measurements (performed between 300 K and 400 K), were conducted to examine the properties of the composites. With the addition of plasticizer, the thermal properties have changed and the dielectric constant of the composite has increased significantly. The glass transition temperature of pure PMMA measured 121.7°C and this value did not change significantly with the addition of TiO2, however, 112°C was measured in the sample with the addition 4 ml of PC. While the dielectric constant of pure PMMA was 3.64, the ε′ value increased to 5.66 with the addition of TiO2 and reached 12.6 with the addition of 4 ml PC. These changes have been attributed to increase in amorphous ratio that facilitates polymer dipolar and segmental mobility.


2018 ◽  
Vol 36 (6) ◽  
pp. 495-504 ◽  
Author(s):  
Sunil S Suresh ◽  
Smita Mohanty ◽  
Sanjay K Nayak

The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.


2018 ◽  
Vol 7 (4) ◽  
pp. 547-551
Author(s):  
Dalal Hassan ◽  
Ahmed Hashim

Piezoelectric materials have been prepared from (poly-methyl methacrylate-lead oxide) nanocomposites for electronic applications. The lead oxide nanoparticles were added to poly-methyl methacrylate by different concentrations are (4, 8, and 12) wt%. The structural and dielectric properties of nanocomposites were studied. The results showed that the dielectric constant and dielectric loss of nanocomposites decrease with increase in frequency of applied electric field. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of poly-methyl methacrylate increase with increase in lead oxide nanoparticles concentrations. The results of pressure sensor showed that the electrical resistance of (PMMA-PbO2) nanocomposites decreases with increase in pressure.


RSC Advances ◽  
2017 ◽  
Vol 7 (10) ◽  
pp. 6170-6178 ◽  
Author(s):  
Feng You ◽  
Xinye Li ◽  
Liang Zhang ◽  
Dongrui Wang ◽  
Chang-Yong Shi ◽  
...  

The morphological transformation of PP/PMMA/graphene nanocomposites during biaxial stretching leads to anisotropic electrical conductivity.


Sign in / Sign up

Export Citation Format

Share Document