SYMMETRY INSIGHTS FOR DESIGN OF SUPERCOMPUTER NETWORK TOPOLOGIES: ROOTS AND WEIGHTS LATTICES

2012 ◽  
Vol 26 (31) ◽  
pp. 1250169 ◽  
Author(s):  
YUEFAN DENG ◽  
ALEXANDRE F. RAMOS ◽  
JOSÉ EDUARDO M. HORNOS

We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Ben Salisbury ◽  
Adam Schultze ◽  
Peter Tingley

International audience Lusztig's theory of PBW bases gives a way to realize the crystal B(∞) for any simple complex Lie algebra where the underlying set consists of Kostant partitions. In fact, there are many different such realizations, one for each reduced expression for the longest element of the Weyl group. There is an algorithm to calculate the actions of the crystal operators, but it can be quite complicated. For ADE types, we give conditions on the reduced expression which ensure that the corresponding crystal operators are given by simple combinatorial bracketing rules. We then give at least one reduced expression satisfying our conditions in every type except E8, and discuss the resulting combinatorics. Finally, we describe the relationship with more standard tableaux combinatorics in types A and D.


2016 ◽  
Vol 56 (3) ◽  
pp. 202 ◽  
Author(s):  
Lenka Háková ◽  
Jiří Hrivnák ◽  
Lenka Motlochová

The aim of this article is to describe several cubature formulas related to the Weyl group orbit functions, i.e. to the special cases of the Jacobi polynomials associated to root systems. The diagram containing the relations among the special functions associated to the Weyl group orbit functions is presented and the link between the Weyl group orbit functions and the Jacobi polynomials is explicitly derived in full generality. The four cubature rules corresponding to these polynomials are summarized for all simple Lie algebras and their properties simultaneously tested on model functions. The Clenshaw-Curtis method is used to obtain additional formulas connected with the simple Lie algebra <em>C</em><sub>2</sub>.


1994 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
D. Ž. Doković ◽  
P. Check ◽  
J.-Y. Hée

AbstractLet R be a root system (in the sense of Bourbaki) in a finite dimensional real inner product space V. A subset P ⊂ R is closed if α, β ∊ P and α + β ∊ R imply that α + β ∊ P. In this paper we shall classify, up to conjugacy by the Weyl group W of R, all closed sets P ⊂ R such that R\P is also closed. We also show that if θ:R —> R′ is a bijection between two root systems such that both θ and θ-1 preserve closed sets, and if R has at most one irreducible component of type A1, then θ is an isomorphism of root systems.


2010 ◽  
Vol 06 (02) ◽  
pp. 281-309 ◽  
Author(s):  
F. G. GARVAN

Let spt (n) denote the total number of appearances of smallest parts in the partitions of n. Recently, Andrews showed how spt (n) is related to the second rank moment, and proved some surprising Ramanujan-type congruences mod 5, 7 and 13. We prove a generalization of these congruences using known relations between rank and crank moments. We obtain explicit Ramanujan-type congruences for spt (n) mod ℓ for ℓ = 11, 17, 19, 29, 31 and 37. Recently, Bringmann and Ono proved that Dyson's rank function has infinitely many Ramanujan-type congruences. Their proof is non-constructive and utilizes the theory of weak Maass forms. We construct two explicit nontrivial examples mod 11 using elementary congruences between rank moments and half-integer weight Hecke eigenforms.


2007 ◽  
Vol 09 (01) ◽  
pp. 1-20
Author(s):  
KEQUAN DING ◽  
SIYE WU

We introduce inversions for classical Weyl group elements and relate them, by counting, to the length function, root systems and Schubert cells in flag manifolds. Special inversions are those that only change signs in the Weyl groups of types Bn, Cnand Dn. Their counting is related to the (only) generator of the Weyl group that changes signs, to the corresponding roots, and to a special subvariety in the flag manifold fixed by a finite group.


2002 ◽  
Vol 01 (03) ◽  
pp. 341-356 ◽  
Author(s):  
BENOÎT ARBOUR ◽  
DRAGOMIR Ž. ĐOKOVIĆ

We derive explicit formulae for the characteristics H(k) of the semiregular nilpotent orbits Dn(ak) of the simple complex Lie algebra [Formula: see text] of type Dn. These formulae express H(k) as an integral linear combination of a basis of the Cartan subalgebra [Formula: see text] of [Formula: see text]. For that purpose we use several suitable bases of [Formula: see text] consisting of coroots. We also construct several explicit standard triples (E, H, F) with H = H(k), and E, F ∈ Dn(ak). Similar triples are constructed also for each connected component of the intersection of the orbit Dn(ak) with the split real form [Formula: see text] and the real form [Formula: see text] of [Formula: see text].


2021 ◽  
Vol 9 (1) ◽  
pp. 119-148
Author(s):  
Thomas Ernst

Abstract We introduce most of the concepts for q-Lie algebras in a way independent of the base field K. Again it turns out that we can keep the same Lie algebra with a small modification. We use very similar definitions for all quantities, which means that the proofs are similar. In particular, the quantities solvable, nilpotent, semisimple q-Lie algebra, Weyl group and Weyl chamber are identical with the ordinary case q = 1. The computations of sample q-roots for certain well-known q-Lie groups contain an extra q-addition, and consequently, for most of the quantities which are q-deformed, we add a prefix q in the respective name. Important examples are the q-Cartan subalgebra and the q-Cartan Killing form. We introduce the concept q-homogeneous spaces in a formal way exemplified by the examples S U q ( 1 , 1 ) S O q ( 2 ) {{S{U_q}\left( {1,1} \right)} \over {S{O_q}\left( 2 \right)}} and S O q ( 3 ) S O q ( 2 ) {{S{O_q}\left( 3 \right)} \over {S{O_q}\left( 2 \right)}} with corresponding q-Lie groups and q-geodesics. By introducing a q-deformed semidirect product, we can define exact sequences of q-Lie groups and some other interesting q-homogeneous spaces. We give an example of the corresponding q-Iwasawa decomposition for SLq(2).


2020 ◽  
Vol 28 (3) ◽  
pp. 301-305
Author(s):  
Askold M. Perelomov

AbstractFor every simple finite-dimensional complex Lie algebra, I give a simple construction of all (except for the Pfaffian) basic polynomials invariant under the Weyl group. The answer is given in terms of the two basic polynomials of smallest degree.


Sign in / Sign up

Export Citation Format

Share Document