ERRATUM: EXACT SOLITON SOLUTIONS AND QUASI-PERIODIC WAVE SOLUTIONS TO THE FORCED VARIABLE-COEFFICIENT KdV EQUATION

2012 ◽  
Vol 26 (24) ◽  
pp. 1292001
Author(s):  
YI ZHANG ◽  
ZHILONG CHENG
2012 ◽  
Vol 26 (19) ◽  
pp. 1250072 ◽  
Author(s):  
YI ZHANG ◽  
ZHILONG CHENG

In this paper, the time-dependent variable-coefficient KdV equation with a forcing term is considered. Based on the Hirota bilinear method, the bilinear form of this equation is obtained, and the multi-soliton solutions are studied. Then the periodic wave solutions are obtained by using Riemann theta function, and it is also shown that classical soliton solutions can be reduced from the periodic wave solutions.


2020 ◽  
Vol 34 (16) ◽  
pp. 2050171
Author(s):  
Chao Dong ◽  
Shu-Fang Deng

The supersymmetric variable-coefficient KdV equation is presented and it admits Painlevé property by the standard singularity analysis. Based on Hirota bilinear method and Riemann theta function, one and two quasi-periodic wave solutions for the supersymmetric variable-coefficient KdV equation are studied. In addition, we give the asymptotic relations between quasi-periodic wave solutions and soliton solutions.


2015 ◽  
Vol 29 (19) ◽  
pp. 1550101 ◽  
Author(s):  
Jian-Min Tu ◽  
Shou-Fu Tian ◽  
Mei-Juan Xu ◽  
Pan-Li Ma

In this paper, a [Formula: see text]-dimensional generalized variable-coefficient Sawada–Kotera (gvcSK) equation is investigated, which describes many nonlinear phenomena in fluid dynamics and plasma physics. Based on the properties of binary Bell polynomials, we present a Hirota’s bilinear equation to the gvcSK equation. By virtue of the Hirota’s bilinear equation, we obtain the N-soliton solutions and the quasi-periodic wave solutions of the gvcSK equation, which can be reduced to the ones of several integrable equations such as Sawada–Kotera, modified Caudrey–Dodd–Gibbon–Sawada–Kotera, isospectral BKP equations and etc. Furthermore, we obtain the relationship between the soliton solutions and periodic solutions by considering the asymptotic properties of the periodic solutions.


2021 ◽  
Author(s):  
Lingchao He ◽  
Jianwen Zhang ◽  
Zhonglong Zhao

Abstract In this paper, we consider a generalized (2+1)-dimensional nonlinear wave equation. Based on the bilinear, the N-soliton solutions are obtained. The resonance Y-type soliton and the interaction solutions between M-resonance Y-type solitons and P-resonance Y-type solitons are constructed by adding some new constraints to the parameters of the N-soliton solutions. The new type of two-opening resonance Y-type soliton solutions are presented by choosing some appropriate parameters in 3-soliton solutions. The hybrid solutions consisting of resonance Y-type solitons, breathers and lumps are investigated. The trajectories of the lump waves before and after the collision with the Y-type solitons are analyzed from the perspective of mathematical mechanism. Furthermore, the multi-dimensional Riemann-theta function is employed to investigate the quasi-periodic wave solutions. The one-periodic and two-periodic wave solutions are obtained. The asymptotic properties are systematically analyzed, which establish the relations between the quasi-periodic wave solutions and the soliton solutions. The results may be helpful to provide some effective information to analyze the dynamical behaviors of solitons, fluid mechanics, shallow water waves and optical solitons.


2016 ◽  
Vol 71 (3) ◽  
pp. 235-240 ◽  
Author(s):  
Hengchun Hu ◽  
Xiao Hu ◽  
Bao-Feng Feng

AbstractNonlocal symmetries are obtained for the coupled integrable dispersionless (CID) equation. The CID equation is proved to be consistent, tanh-expansion solvable. New, exact interaction excitations such as soliton–cnoidal wave solutions, soliton–periodic wave solutions, and multiple resonant soliton solutions are discussed analytically and shown graphically.


2019 ◽  
Vol 33 (27) ◽  
pp. 1950319 ◽  
Author(s):  
Hongfei Tian ◽  
Jinting Ha ◽  
Huiqun Zhang

Based on the Hirota bilinear form, lump-type solutions, interaction solutions and periodic wave solutions of a (3[Formula: see text]+[Formula: see text]1)-dimensional Korteweg–de Vries (KdV) equation are obtained. The interaction between a lump-type soliton and a stripe soliton including two phenomena: fission and fusion, are illustrated. The dynamical behaviors are shown more intuitively by graphics.


2014 ◽  
Vol 548-549 ◽  
pp. 1196-1200
Author(s):  
Yong Mei Bao ◽  
Siqintana Bao

In order to construct exact soliton solutions of nonlinear evolution equations with variable coefficients. By using a transformation, the variable coefficient KdV equation with forced Term is reduced to nonlinear ordinary differential equation (NLODE), after that, a number of exact solitons solutions of variable coefficient KdV equation with forced Term are obtained by using the equation shorted in NLODE. As it showed above, this kind of method can be applied in solving a large number of nonlinear evolution equations.


2010 ◽  
Vol 24 (10) ◽  
pp. 1011-1021 ◽  
Author(s):  
JONU LEE ◽  
RATHINASAMY SAKTHIVEL ◽  
LUWAI WAZZAN

The exact traveling wave solutions of (4 + 1)-dimensional nonlinear Fokas equation is obtained by using three distinct methods with symbolic computation. The modified tanh–coth method is implemented to obtain single soliton solutions whereas the extended Jacobi elliptic function method is applied to derive doubly periodic wave solutions for this higher-dimensional integrable equation. The Exp-function method gives generalized wave solutions with some free parameters. It is shown that soliton solutions and triangular solutions can be established as the limits of the Jacobi doubly periodic wave solutions.


Author(s):  
Yingnan Zhang ◽  
Xingbiao Hu ◽  
Jianqing Sun

In this paper, we study the N -periodic wave solutions of coupled Korteweg–de Vries (KdV)–Toda-type equations. We present a numerical process to calculate the N -periodic waves based on the direct method of calculating periodic wave solutions proposed by Akira Nakamura. Particularly, in the case of N  = 3, we give some detailed examples to show the N -periodic wave solutions to the coupled Ramani equation, the Hirota–Satsuma coupled KdV equation, the coupled Ito equation, the Blaszak–Marciniak lattice, the semi-discrete KdV equation, the Leznov lattice and a relativistic Toda lattice.


Sign in / Sign up

Export Citation Format

Share Document