GIBBS ENTROPY APPROACH TO THE REALIZATION OF QUBITS AND QUTRITS

2013 ◽  
Vol 27 (29) ◽  
pp. 1347006
Author(s):  
CLAUDIA M. SARRIS ◽  
ARACELI N. PROTO ◽  
F. BARY MALIK

We investigate, in this paper, the possibilities of generating qubits and qutrits in strongly correlated systems described by a modified of Hubbard Hamiltonian. Out of the complete set of commutating operators that form a close Lie algebra with this Hamiltonian, one can generate a particular operator, the expectation values of which, with respect to the density matrix generated from the Gibbs entropy by Maximum Entropy Principle (MEP), are 0 and ±1 near a particular temperature. This density matrix is generated by the superposition of highly coherent two-electronic states, analogous to the BCS ones. The concurrent existence of the expectation values of 0, +1 and -1 of this operator with respect to the density matrix occurs near the phase transition of aligned states to anti-aligned states. These are qutrits, which in the absence of a magnetic field reduces to qubits. We also present the general uncertainty principle (GUP) valid for the set of these operators, evaluate its value for specific heat, and examine the behavior of the specific heat and the related GUP as a function of the temperature. This temperature dependence of the specific heat, exhibits the expected trend of phase transition near the transition temperature. For the chosen Hamiltonian, we present the derivation of the postulate of Weiss' mean field theory. This relation points to the fact that to generate qubits and qutrits for the system investigated here, it must have an intrinsic magnetic field and be a strongly correlated system such as manganites. This investigation further points to the fact that the qutrits gate may be a suitable quantum computing algorithm for systems with intrinsic magnetic and applied electromagnetic fields, since in the presence of such fields z-projections of the state with spin-1 are no longer degenerate. This investigation establishes that the thermodynamical evolution of fermion pair in the presence of an interaction with its environment are different for qubits and qutrits, particularly in the presence of an internal and external magnetic field and possibly for the general case of electro-magnetic field.

2002 ◽  
Vol 11 (04) ◽  
pp. 545-559 ◽  
Author(s):  
V. K. GUPTA ◽  
ASHA GUPTA ◽  
S. SINGH ◽  
J. D. ANAND

We have studied phase transition from hadron matter to quark matter in the presence of high magnetic fields incorporating the trapped electron neutrinos at finite temperatures. We have used the density dependent quark mass (DDQM) model for the quark phase while the hadron phase is treated in the frame-work of relativistic mean field theory. It is seen that the energy density in the hadron phase at phase transition decreases with both magnetic field and temperature.


2000 ◽  
Vol 14 (24) ◽  
pp. 2561-2575
Author(s):  
GANG SU ◽  
HUAIZHONG XING ◽  
DESHENG XUE ◽  
ZIYU CHEN ◽  
FASHEN LI

The one-dimensional spin-one Heisenberg antiferromagnet with single-ion anisotropy in the presence of the applied magnetic field is explored in terms of the Schwinger boson mean-field theory. The temperature and anisotropy dependences of the specific heat, the susceptibility and the magnetization are thoroughly discussed. New features of the specific heat as a function of temperature as well as anisotropy are found. A transition from an antiferromagnetic phase to a spin-canting phase is observed, and meanwhile, a schematic phase diagram is proposed.


2021 ◽  
Vol 7 (1) ◽  
pp. 6-17
Author(s):  
R. K. Rai ◽  
R. B. Ray ◽  
G. C. Kaphle ◽  
O. P. Niraula

The Mott-insulator phase transition behaviour of the superstructure of strongly correlated system, CaxSr(1-x)VO3 (x =0, 0.33, 0.67, 1) have studied using the conventional density functional theory and the dynamical mean field theory. The Mott-Hubbard metal-insulator phase transition of superstructures, Ca0.33Sr0.67VO3 and Ca0.67Sr0.33VO3 formed by the CaVO3 and SrVO3 correlated metals, are obtained at U=4.5eV with β= 6(eV)-1 and U =4.5eV with β= 7(eV)-1 respectively. The values of U and β calculated through the Maximum Entropy model using the Green’s function data, are consistent with the experimental results. The value of Seebeck coefficient (S) of superstructure Ca0.33Sr0.67VO3 and Ca0.67Sr0.33VO3 are found to be +0.0011[V/K] and -0.0011[V/K] within the chemical potential  μ = -1.266 eV to μ = -0.938 eV. The figures of merit (ZT) are found to be 0.97 at room temperature for these systems. The variation of electrical and thermal conductivities has also been discussed.


2005 ◽  
Vol 19 (18) ◽  
pp. 2975-2987 ◽  
Author(s):  
ARIF NESRULLAJEV ◽  
FATMA Z. TEPEHAN

In this work, the effect of thin films on the orientational, thermotropic and optical properties and on the peculiarities of the nematic–isotropic liquid phase transition has been carried out. The planar textures of MBBA+EBBA eutectic mixture on the surfaces coated with Al 2 O 3 and ZrO 2 thin films have been obtained. The optical and thermodynamical parameters of the obtained, oriented textures have been determined. The effect of thin films on the temperature width of heterophase region and on the nematic–isotropic liquid phase transition temperatures has been investigated. The shift of the phase transition temperatures and the change of the temperature width of the heterophase region have been revealed. For the analysis of peculiarities of the nematic–isotropic liquid phase transition and the heterophase regions of this transition, the mean field theory has been used.


Author(s):  
Thies Jansen ◽  
Alexander Brinkman

Abstract Electron-electron interactions can be useful for realizing new nontrivial topological phases of matter. Here, we show by means of a tight-binding model and mean field theory how electron-electron interactions can lead to a topological phase transition. By externally adding or removing electrons from the system a band inversion between two bands with dierent parity is induced. This leads to a topological nontrivial phase if spin-orbit coupling is present. Besides the toy-model illustrating this mechanism, we also propose SmB6 as a possible playground for experimentally realizing a topological phase transition by external tuning.


Sign in / Sign up

Export Citation Format

Share Document