SPIN-DEPENDENT ELECTRON TRANSPORT THROUGH A THREE-TERMINAL MESOSCOPIC SPIN-ORBIT COUPLED SYSTEMS

2013 ◽  
Vol 27 (07) ◽  
pp. 1361003
Author(s):  
ZHONGHUI XU ◽  
XIANBO XIAO ◽  
YUGUANG CHEN

We studied theoretically the spin-dependent electron transport properties of a three-terminal nanostructure proposed by Xiao and Chen [J. Appl. Phys.1, 108 (2010)]. The spin-resolved recursive Green's function method is used to calculate the three-terminal spin-polarization. We focus on the influence both of the structural parameters and Rashba spin–orbit coupling (SOC) strength in the investigated system. It is shown that the spin-polarization is still a reasonable value for being observable in experiment with small Rashba SOC strength and longer length of the wide region in the investigated system. The underlying physics is revealed to originate from the effect of SOC-induced effective magnetic field at the structure-induced Fano resonance. This length of the middle wide region in three-terminal nanostructure can be more easily fabricated experimentally.

2011 ◽  
Vol 25 (12) ◽  
pp. 1671-1680 ◽  
Author(s):  
SHU-GUANG CHENG ◽  
XIAO-JUAN ZHAO ◽  
PEI ZHAO

The electronic transport through a mesoscopic confining region coupled to two spin-orbit coupling semiconductor leads is studied. We mainly focus on how the transport behaviors are affected by the Rashba spin-orbit interaction (SOI), which has been neglected in the previous theoretical papers but indeed exists in the semiconductor leads from the recent experimental results. By using Landauer–Büttiker formula and the non-equilibrium Green's function method, the linear conductance of this device is obtained. The numerical results exhibit that the conductance are similar for the two cases of the absence and the presence of the SOI. It means that the SOI in the leads does not qualitatively affects the transport behaviors. However, in detail, the peaks of the conductance are widened and enhanced by the SOI. In some specific cases, the widening and the enhancement could be very strong.


2019 ◽  
Vol 100 (12) ◽  
Author(s):  
Yulin Gan ◽  
Yu Zhang ◽  
Dennis Valbjørn Christensen ◽  
Nini Pryds ◽  
Yunzhong Chen

2008 ◽  
Vol 22 (27) ◽  
pp. 2667-2676 ◽  
Author(s):  
DE LIU ◽  
HONGMEI ZHANG

Based on the coherent quantum transport theory, the spin polarization and tunneling magnetoresistance for polarized electrons through ferromagnetic/semiconductor/ferromagnetic (FM/SM/FM) heterostructure are studied theoretically within the Landauer framework of ballistic transport. The significant quantum size, quantum coherent, angle between the magnetic moments of the left and right ferromagnets, and Rashba spin-orbit interaction are considered simultaneously. The results indicate that the spin polarization and tunneling magnetoresistance are periodic functions of the semiconductor channel length, quasiperiodic functions of the Rashba spin-orbit coupling strength, and depend on the relative orientation of the two magnetizations in the left and right ferromagnets. A moderate angle, semiconductor channel length, and Rashba spin-orbit coupling strength allow a giant spin polarization or tunneling magnetoresistance. The results may be of relevance for the implementation of quasi-one-dimensional spin-transistor devices.


2011 ◽  
Vol 25 (07) ◽  
pp. 487-496
Author(s):  
XI FU ◽  
ZESHUN CHEN ◽  
FENG ZHONG ◽  
YONGHONG KONG

We investigate theoretically the electron transport properties of a quantum wire (QW) non-adiabatically connected to two normal leads with weak Dresselhaus spin-orbit coupling (DSOC). Using the scattering matrix method and Landauer–Büttiker formula within the effective free-electron approximation, we have calculated the spin-dependent conductances G↑/↓ and spin polarization Pz of a hard-wall potential confined QW. It is demonstrated that regardless of the existence of DSOC G↑/↓ and Pz present oscillation structures near the subband edges of QW, and the number of quantized conductance plateaus is determined by the number of propagation modes in two leads. Moreover, the DSOC induces splitting of spin-up and spin-down conductance plateaus as well as the existence of spin polarization (Pz ≠ 0), and the enhancement of Dresselhaus strength destroys the conductance plateaus for the wide QW case. The above results indicate that the spin-dependent conductances and Pz are strongly dependent on the Dresselhaus strength which is the physical basis for spin transistor.


Sign in / Sign up

Export Citation Format

Share Document