ELECTRON TRANSPORT THROUGH A MESOSCOPIC DEVICE WITH THE SPIN-ORBIT COUPLING SEMICONDUCTOR LEADS

2011 ◽  
Vol 25 (12) ◽  
pp. 1671-1680 ◽  
Author(s):  
SHU-GUANG CHENG ◽  
XIAO-JUAN ZHAO ◽  
PEI ZHAO

The electronic transport through a mesoscopic confining region coupled to two spin-orbit coupling semiconductor leads is studied. We mainly focus on how the transport behaviors are affected by the Rashba spin-orbit interaction (SOI), which has been neglected in the previous theoretical papers but indeed exists in the semiconductor leads from the recent experimental results. By using Landauer–Büttiker formula and the non-equilibrium Green's function method, the linear conductance of this device is obtained. The numerical results exhibit that the conductance are similar for the two cases of the absence and the presence of the SOI. It means that the SOI in the leads does not qualitatively affects the transport behaviors. However, in detail, the peaks of the conductance are widened and enhanced by the SOI. In some specific cases, the widening and the enhancement could be very strong.

2013 ◽  
Vol 27 (07) ◽  
pp. 1361003
Author(s):  
ZHONGHUI XU ◽  
XIANBO XIAO ◽  
YUGUANG CHEN

We studied theoretically the spin-dependent electron transport properties of a three-terminal nanostructure proposed by Xiao and Chen [J. Appl. Phys.1, 108 (2010)]. The spin-resolved recursive Green's function method is used to calculate the three-terminal spin-polarization. We focus on the influence both of the structural parameters and Rashba spin–orbit coupling (SOC) strength in the investigated system. It is shown that the spin-polarization is still a reasonable value for being observable in experiment with small Rashba SOC strength and longer length of the wide region in the investigated system. The underlying physics is revealed to originate from the effect of SOC-induced effective magnetic field at the structure-induced Fano resonance. This length of the middle wide region in three-terminal nanostructure can be more easily fabricated experimentally.


2021 ◽  
pp. 2007862
Author(s):  
Chia‐Tse Tai ◽  
Po‐Yuan Chiu ◽  
Chia‐You Liu ◽  
Hsiang‐Shun Kao ◽  
C. Thomas Harris ◽  
...  

2014 ◽  
Vol 89 (23) ◽  
Author(s):  
Florian Geissler ◽  
François Crépin ◽  
Björn Trauzettel

Nano Letters ◽  
2015 ◽  
Vol 15 (2) ◽  
pp. 1152-1157 ◽  
Author(s):  
Shan Zhang ◽  
Ning Tang ◽  
Weifeng Jin ◽  
Junxi Duan ◽  
Xin He ◽  
...  

2006 ◽  
Vol 23 (11) ◽  
pp. 3065-3068 ◽  
Author(s):  
Wang Yi ◽  
Sheng Wei ◽  
Zhou Guang-Hui

Sign in / Sign up

Export Citation Format

Share Document