CaCu3Ti4O12–PVDF polymeric composites with enhanced capacitive energy density

2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540003 ◽  
Author(s):  
Xin Ouyang ◽  
Peng Cao ◽  
Weijun Zhang ◽  
Zhuofeng Liu ◽  
Zhaohui Huang ◽  
...  

CaCu 3 Ti 4 O 12 (CCTO)–poly(vinylidene fluoride (PVDF)) composites were prepared by melt blending and hot molding techniques. The addition of CCTO remarkably enhanced the dielectric properties and the thermal conductivity of PVDF composites, while the melting point of the PVDF composites (~170°C) was almost independent of the CCTO concentration. Based on the results of dielectric constant and dielectric breakdown voltage, the PVDF composite containing 40 vol.% CCTO fillers shows the optimized capacitive energy storage potential (7.81 J/cm3).

2019 ◽  
Vol 19 (6) ◽  
pp. 3591-3596 ◽  
Author(s):  
Lirong Wu ◽  
Dandan Yang

The nickel (Ni) particles and graphite nanosheet (GNS) filled poly(vinylidene fluoride) (PVDF) composites were prepared by solution blending and hot-press processing in the magnetic field. The influence of Ni particles and GNS fillers for the structure, morphology, AC conductivity, dielectric properties and thermal conductivity of composites was investigated. The results showed that the β-phase crystals of PVDF matrix was increased obviously. The AC conductivity, dielectric constant and dielectric loss of PVDF/Ni/GNS composite reached to 10−9 s/cm, 62 and 0.39 when the filler loading was 11 wt.% at 102 Hz, respectively. At the ratio of 15 wt.% filler, the AC conductivity of PVDF/Ni/GNS composite was vastly improved to 10−6 s/cm, however, the dielectric constant increased to ~80 and dielectric loss was over 600 at 102 Hz. By comparing the dielectric performance of PVDF/Ni/GNS, PVDF/Ni and PVDF/GNS composites, it is found that the parallel arrangement of the filler conduces to improve the dielectric properties of the composites. Furthermore, the thermal conductivity of PVDF/Ni/GNS composites increased with the increase of Ni and GNS contents and the value raised to over 0.5 W/mK when filler loading was 15 wt.%.


2012 ◽  
Vol 496 ◽  
pp. 263-267
Author(s):  
Rui Li ◽  
Jian Zhong Pei ◽  
Yan Wei Li ◽  
Xin Shi ◽  
Qun Le Du

A novel all-polymeric material with high dielectric constant (k) has been developed by blending poly (vinylidene fluoride) (PVDF) with polyamide-6 (PA6). The dependence of the dielectric properties on frequency and polymer volume fraction was investigated. When the volume fraction of PA6 is 20%, the dielectric property is better than others. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. The XRD demonstrate that the PA6 and PVDF affect the crystalline behavior of each component. Furthermore, the stable dielectric constants of the blends could be tuned by adjusting the content of the polymers. The created high-k all-polymeric blends represent a novel type of material that are simple technology and easy to process, and is of relatively high dielectric constant, applications as flexible electronics.


2015 ◽  
Vol 08 (03) ◽  
pp. 1540011 ◽  
Author(s):  
Xin Ouyang ◽  
Peng Cao ◽  
Weijun Zhang ◽  
Zhaohui Huang ◽  
Wei Gao

In this paper, we report a series of homogeneous polymeric composites with enhanced dielectric properties and thermal conductivity. The composites were constituted of polyvinylidene fluorides (PVDFs) matrix and CaCu 3 Ti 4 O 12 (CCTO) monolithic or CCTO/β- SiC hybrid fillers, and prepared by simple melt blending and hot moulding technique. The influence of different types of fillers and their composition on the dielectric response and thermal conductivity of the obtained composites was studied. Results show that hybrid loading is preferred and a reasonable combination of thermal conductivity (0.80 W⋅m-1⋅K-1), dielectric constant (∼50) and dielectric loss (∼0.07) at 103 Hz was achieved in the PVDF composite containing 40 vol.% CCTO and 10 vol.% β- SiC . The strong dipolar and interfacial polarization derived from the fillers are responsible for the enhancement of the dielectric constant, while the formation of thermally conductive networks/chains by β- SiC whiskers contributes to the improved thermal conductivity.


RSC Advances ◽  
2015 ◽  
Vol 5 (51) ◽  
pp. 40692-40699 ◽  
Author(s):  
Shaohui Liu ◽  
Shi Xiao ◽  
Shaomei Xiu ◽  
Bo Shen ◽  
Jiwei Zhai ◽  
...  

Schematic diagrams of the fabrication of F-BST NF/PVDF nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document