Correlation between charge-order state and next nearest-neighbor hopping in electron-doped cuprate superconductors

2018 ◽  
Vol 32 (17) ◽  
pp. 1840027 ◽  
Author(s):  
Yingping Mou ◽  
Shiping Feng

Within the framework of the t-t[Formula: see text]J model, the evolution of the charge-order state with the next nearest-neighbor (NN) hopping in the electron-doped cuprate superconductors is studied. It is shown that although the magnitude of the charge-order wave vector increases with the increase of the next NN hopping in the hole-doped case, the charge-order wave vector in the electron-doped side decreases with the increase of the next NN hopping, reflecting an asymmetric next NN hopping dependence of the charge-order state between the hole- and electron-doped cuprate superconductors.

2016 ◽  
Vol 30 (13) ◽  
pp. 1642005
Author(s):  
Shiping Feng ◽  
Deheng Gao ◽  
Huaisong Zhao

The recently discovered charge order is an intrinsic and universal property of cuprate superconductors, however, its microscopic origin remains debated. Here we review briefly the theoretical work about the nature of charge order in cuprate superconductors. In particular, we show that the electron self-energy obliterates the electron Fermi surface around the antinodal region, leaving behind disconnected Fermi arcs located around the nodal region. The charge-order state on the other hand is driven by the Fermi-arc instability, with a characteristic wavevector corresponding to the hot spots of the Fermi arcs rather than the antinodal nesting vector. Since the pseudogap emanates from the electron self-energy, the Fermi arc, charge order, and pseudogap in cuprate superconductors are intimately related each other.


2021 ◽  
Vol 7 (27) ◽  
pp. eabg7394
Author(s):  
Qisi Wang ◽  
Karin von Arx ◽  
Masafumi Horio ◽  
Deepak John Mukkattukavil ◽  
Julia Küspert ◽  
...  

Charge order is universal to all hole-doped cuprates. Yet, the driving interactions remain an unsolved problem. Electron-electron interaction is widely believed to be essential, whereas the role of electron-phonon interaction is unclear. We report an ultrahigh-resolution resonant inelastic x-ray scattering (RIXS) study of the in-plane bond-stretching phonon mode in stripe-ordered cuprate La1.675Eu0.2Sr0.125CuO4. Phonon softening and lifetime shortening are found around the charge ordering wave vector. In addition to these self-energy effects, the electron-phonon coupling is probed by its proportionality to the RIXS cross section. We find an enhancement of the electron-phonon coupling around the charge-stripe ordering wave vector upon cooling into the low-temperature tetragonal structure phase. These results suggest that, in addition to electronic correlations, electron-phonon coupling contributes substantially to the emergence of long-range charge-stripe order in cuprates.


2006 ◽  
Vol 962 ◽  
Author(s):  
Z. Q. Wang ◽  
K. B. Yin ◽  
F. Gao ◽  
K. F. Wang ◽  
Z. F. Ren ◽  
...  

ABSTRACTNd0.5Ca0.5MnO3 (NCMO) and Nd0.5Sr0.5MnO3 (NSMO) nanoparticles have been synthesized using microemulsion synthesis method, with hexamethylene alkyl, a mixture of OP and 1-hexanol, NaOH as oil phase, surfactant, and precipitating agent, respectively. The phase formation of NCMO and NSMO nanoparticles was examined. The final NCMO and NSMO nanoparticles have average particle size of 24 and 50 nm, respectively, and present high-quality crystallinity. Measurements of the magnetic properties suggest that the charge-order state favored for bulk NCMO phase collapses in NCMO nanoparticles. The spin freezing behavior for both NCMO and NSMO nanoparticles was identified.


2021 ◽  
Vol 118 (34) ◽  
pp. e2106881118
Author(s):  
Naman K. Gupta ◽  
Christopher McMahon ◽  
Ronny Sutarto ◽  
Tianyu Shi ◽  
Rantong Gong ◽  
...  

During the last decade, translational and rotational symmetry-breaking phases—density wave order and electronic nematicity—have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprate superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains unclear. Here, we employ resonant X-ray scattering in a cuprate high-temperature superconductor La1.6−xNd0.4SrxCuO4 (Nd-LSCO) to navigate the cuprate phase diagram, probing the relationship between electronic nematicity of the Cu 3d orbitals, charge order, and the pseudogap phase as a function of doping. We find evidence for a considerable decrease in electronic nematicity beyond the pseudogap phase, either by raising the temperature through the pseudogap onset temperature T* or increasing doping through the pseudogap critical point, p*. These results establish a clear link between electronic nematicity, the pseudogap, and its associated quantum criticality in overdoped cuprates. Our findings anticipate that electronic nematicity may play a larger role in understanding the cuprate phase diagram than previously recognized, possibly having a crucial role in the phenomenology of the pseudogap phase.


Sign in / Sign up

Export Citation Format

Share Document