Electron-ion dynamics of hydroperoxyl radical under intense femtosecond laser pulses

2020 ◽  
Vol 34 (32) ◽  
pp. 2050320
Author(s):  
Zhiping Wang ◽  
Xuefen Xu ◽  
Fengshou Zhang ◽  
Chaoyi Qian

The electron-ion dynamics of hydroperoxyl radical in intense femtosecond laser pulses is studied by using time-dependent density functional theory combined with molecular dynamics approach. We calculate the optimized structure, the ionization energy, and the optical absorption strength. The results are in good agreement with experiments. The irradiation dynamics of HO2 including the ionization, the dipole moment, the bond lengths, the kinetic energies, and the level depletion is explored by varying the laser frequency. Computational results indicate that the excitation behaviors are distinct due to different frequencies. Furthermore, the angular dependence of the total ionization and the orbital ionization yields of HO2 are explored. The calculated result predicts a maximum around [Formula: see text] and [Formula: see text] for the total ionization and the angular dependence of the total ionization reflects the symmetry of the HOMO.

2016 ◽  
Vol 380 (35) ◽  
pp. 2750-2756
Author(s):  
Xiaoqin Zhang ◽  
Feng Wang ◽  
Xuhai Hong ◽  
Wenyong Su ◽  
Bingcong Gou ◽  
...  

2012 ◽  
Vol 1455 ◽  
Author(s):  
Yoshiyuki Miyamoto

ABSTRACTIn this work, the first-principles computational scheme of electron-ion dynamics based on the time-dependent density functional theory is presented as a tool to study dynamical phenomena induced by light. Two applications of computations for photo-induced phenomena are shown. The one is structural change induced by intense and short laser shot with a purpose to simulate experiments using the femtosecond laser. The other is photo-excitation and subsequent carrier splitting into electrons and holes, which is a key process needed in photovoltaic materials.


2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


Sign in / Sign up

Export Citation Format

Share Document