Stochastic dynamic behavior of FitzHugh–Nagumo neurons stimulated by white noise

Author(s):  
Tao Li ◽  
Kaijun Wu ◽  
Mingjun Yan ◽  
Zhengnan Liu ◽  
Huan Zheng

Stochastic noise exists widely in the nervous system, and noise plays an extremely important role in the information processing of the nervous system. Noise can enhance the ability of neurons to process information as well as decrease it. For the dynamic behavior of stochastic resonance and coherent resonance shown by neurons under the action of stochastic noise, this paper uses Fourier coefficient and coherence resonance coefficient to measure the behavior of stochastic resonance and coherence resonance, respectively, and some conclusions are drawn by analyzing the effects of additive noise and multiplicative noise. Appropriate noise can make the nonlinear system exhibit stochastic resonance behavior and enhance the detection ability of external signals. It can also make the coherent resonance behavior of the nonlinear system reach its optimal state, and the system becomes more orderly. By comparing the effects of additive and multiplicative noise on the stochastic resonance behavior and coherent resonance behavior of the system, it is found that additive and multiplicative noise can both make the system appear the phenomenon of stochastic resonance and have almost identical discharge state at the same noise intensity. However, with the increase of noise intensity, the coherent resonance of the system occurs, the multiplicative noise intensity is smaller than that of additive noise, but the coherent resonance coefficient of additive noise is smaller and the coherent resonance effect is better. The system whose system parameters are located near the bifurcation point is more prone to coherent resonance, and the closer the bifurcation point is, the more obvious the coherent resonance phenomenon is, and the more regular the system becomes. When the parameters of the system are far away from the bifurcation point, the coherent resonance will hardly appear. Besides, when additive and multiplicative noise interact together, the stochastic resonance and coherent resonance phenomena are more likely to appear at small noise, and the behavior of stochastic resonance and coherent resonance that the system shown is better in the local range.

2012 ◽  
Vol 66 (4) ◽  
pp. 479-500 ◽  
Author(s):  
P. Huang ◽  
Y. Pi ◽  
I. Progri

In some Global Positioning System (GPS) signal propagation environments, especially in the ionosphere and urban areas with heavy multipath, GPS signal encounters not only additive noise but also multiplicative noise. In this paper we compare and contrast the conventional GPS signal acquisition method which focuses on handling GPS signal acquisition with additive noise, with the enhanced GPS signal processing under multiplicative noise by proposing an extension of the GPS detection mechanism, to include the GPS detection model that explains detection of the GPS signal under additive and multiplicative noise. For this purpose, a novel GPS signal detection scheme based on high order cyclostationarity is proposed. The principle is introduced, the GPS signal detection structure is described, the ambiguity of initial PseudoRandom Noise (PRN) code phase and Doppler shift of GPS signal is analysed. From the simulation results, the received GPS signal at low power level, which is degraded by additive and multiplicative noise, can be detected under the condition that the received block of GPS data length is at least 1·6 ms and sampling frequency is at least 5 MHz.


1997 ◽  
Vol 07 (04) ◽  
pp. 917-922
Author(s):  
Seon Hee Park ◽  
Seunghwan Kim ◽  
Seung Kee Han

The Nonequilibrium phenomena in a class of globally coupled phase oscillators systems with multiplicative noise are studied. It is shown that at the critical value of the noise intensity the systems undergo a phase transition and converge to clustered states. We also show that the time delay in the interaction between oscillators gives rise to the switching phenomena of clusters. These phenomena are noise-induced effects which cannot be seen in the deterministic systems or in the simple additive noise models.


2020 ◽  
pp. 2150024
Author(s):  
Kang-Kang Wang ◽  
De-Cai Zong ◽  
Ya-Jun Wang ◽  
Sheng-Hong Li

In this paper, the regime shift behaviors between the prosperous state and the extinction state and stochastic resonance (SR) phenomenon for a metapopulation system subjected to time delay and correlated Gaussian colored noises are investigated. Through the numerical calculation of the modified potential function and the stationary probability density function (SPDF), one can make clearly the following results: Both multiplicative noise and noise correlation times can improve effectively the ecological stability and prolong the survival time of the system; while additive noise, time delay and noise correlation strength can weaken significantly the biological stability and speed up the extinction of the population. As for the signal-to-noise ratio (SNR), it is found that time delay, multiplicative noise and noise correlation strength can all impair the SR effect. Conversely, the two noise correlation times and additive noise are in favor of the improvement of the peak values of SNR. It is particularly worth mentioning that in the case of [Formula: see text], time delay [Formula: see text] and self-correlation time [Formula: see text] of the additive noise display exactly the opposite effect on the stimulation of the resonant peak in the SNR–[Formula: see text] plots.


2013 ◽  
Vol 415 ◽  
pp. 298-302
Author(s):  
Deng Rong Zhou ◽  
Jian Chun Gong ◽  
Dan Li

Stochastic resonance is a non-linear phenomenon where the output response of the dynamic system reaches the maximum value under the joint action of a certain intensity of noises and external incentives. In this paper, the phenomenon of stochastic resonance in a FitzHugh-Nagumo neural (FHN) model is studied. For the case that the frequency of the HF signal is much higher than that of the LF signal, under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) with respect to the LF signal is obtained. It is shown that, the SNR is a non-monotonous function of the amplitude and frequency of the HF signal. In addition, the SNR varies non-monotonically with increasing the intensities of the multiplicative and additive noise, with increasing the delayed-time as well as increasing the system parameters of the FHN model. The influence of the correlation time of the colored multiplicative noise and the influence of the coupling strength between the multiplicative and additive noise on the SNR is discussed.


2012 ◽  
Vol 26 (30) ◽  
pp. 1250149 ◽  
Author(s):  
XIAOQIN LUO ◽  
DAN WU ◽  
SHIQUN ZHU

The phenomenon of stochastic resonance (SR) in a time-delayed bistable system with colored coupling between multiplicative and additive noise terms is investigated. The SR can be induced by the multiplicative noise, the time delay and the coupling strength between noise terms. Meanwhile, the SR is affected by the initial condition of the system.


2013 ◽  
Vol 27 (18) ◽  
pp. 1350136 ◽  
Author(s):  
KANG-KANG WANG ◽  
XIAN-BIN LIU ◽  
SHENG-HONG LI

In the present paper, for a Levins metapopulation system that is driven by correlated colored noises, the phenomenon of stochastic resonance (SR) is investigated. Based on the two-state theory and by the use of fast descent method, the expression of the signal-to-noise ratio (SNR) is obtained. Via a numerical simulation, it is shown that the conventional SR occurs in the Levins model for the different values of system parameters. And furthermore, it is revealed that, under the different conditions that if the correlation intensities between the two noises are different, i.e. positive or negative, then all the effects of the addictive noise intensity, the multiplicative noise intensity, the correlated noise intensity and the correlation time on SNR are different.


1998 ◽  
Vol 12 (28) ◽  
pp. 1195-1202 ◽  
Author(s):  
Claudio J. Tessone ◽  
Horacio S. Wio

We analyze the effect of the simultaneous presence of correlated additive and multiplicative noises on the stochastic resonance response of a modulated bistable system. We find that when the correlation parameter is also modulated, the system's response, measured through the output signal-to-noise ratio, becomes largely independent of the additive noise intensity.


2009 ◽  
Vol 23 (02) ◽  
pp. 199-207 ◽  
Author(s):  
CAN-JUN WANG ◽  
DONG-CHENG MEI

The upper bound UB(t) of the time derivative of entropy for a dynamical system driven by both additive colored noise and multiplicative colored noise with colored cross-correlation is investigated. Based on the Fokker–Planck equation, the effects of the parameters on UB(t) are analyzed. The results show that: (i) α (the multiplicative noise intensity), D (the additive noise intensity) and τ2 (the correlation time of the additive noise) always enhance UB (t) monotonically; (ii) λ (the intensity of the cross-correlation between the multiplicative noise and the additive noise), τ1 (the correlation time of the multiplicative noise), τ3 (the correlation time of the cross-correlation) and γ (the dissipative constant) all possess a minimum, i.e., UB (t) decreases for small values and increases for large values.


Sign in / Sign up

Export Citation Format

Share Document