THERMIONIC EMISSION FROM FULLERENES

1992 ◽  
Vol 06 (23n24) ◽  
pp. 3881-3891 ◽  
Author(s):  
Gerhard Walder ◽  
Olof Echt

Fullerenes in the gas phase, excited by a pulsed laser, exhibit thermionic emission. We analyze the time dependence of the ion yield of C n + in a mass spectrometer. By pulsing the extraction field of the ion lens, we are able to observe delayed ions formed as late as 50 µs after excitation by the 2nd, 3rd or 4th harmonic of a Q-switched YAG laser. The enhanced sensitivity of this new technique allows us to detect delayed ions not only from excited C 60 and C 70, but from all other even-sized clusters in the size range 36≤ n ≤70. Our results do not confirm the assertion that thermionic emission from C 60 and C 70 can be characterized by just 2 or 3 distinct rate constants.

1972 ◽  
Vol 50 (14) ◽  
pp. 2230-2235 ◽  
Author(s):  
J. D. Payzant ◽  
A. J. Cunningham ◽  
P. Kebarle

The rate constants for the forward and reverse components of gas phase reactions:[Formula: see text]were measured with a pulsed electron beam, time resolved detection high pressure mass spectrometer at 300 °K. O2, Ar, and He at pressures from 1–7 Torr were used as third gas M. The forward reactions were found to be third order and the reverse reactions second order. Establishment of the equilibria could also be observed.


1973 ◽  
Vol 95 (23) ◽  
pp. 7592-7599 ◽  
Author(s):  
R. Atkinson ◽  
B. J. Finlayson ◽  
J. N. Pitts
Keyword(s):  

The work described in this and the following paper is a continuation of that in parts I and II, devoted to elucidation of the mechanism of the reactions of methylene with chloroalkanes, with particular reference to the reactivities of singlet and triplet methylene in abstraction and insertion processes. The products of the reaction between methylene, prepared by the photolysis of ketene, and 1-chloropropane have been identified and estimated and their dependence on reactant pressures, photolysing wavelength and presence of foreign gases (oxygen and carbon mon­oxide) has been investigated. Both insertion and abstraction mechanisms contribute significantly to the over-all reaction, insertion being relatively much more important than with chloroethane. This type of process appears to be confined to singlet methylene. If, as seems likely, there is no insertion into C—Cl bonds under our conditions (see part IV), insertion into C2—H and C3—H bonds occurs in statistical ratio, approximately. On the other hand, the chlorine substituent reduces the probability of insertion into C—H bonds in its vicinity. As in the chloroethane system, both species of methylene show a high degree of selectivity in their abstraction reactions. We find that k S Cl / k S H >7.7, k T Cl / k T H < 0.14, where the k ’s are rate constants for abstraction, and the super- and subscripts indicate the species of methylene and the type of atom abstracted, respectively. Triplet methylene is discriminating in hydrogen abstraction from 1-C 3 H 7 Cl, the overall rates for atoms attached to C1, C2, C3 being in the ratios 2.63:1:0.


1982 ◽  
Vol 80 ◽  
pp. 433-436 ◽  
Author(s):  
R.T. Bailey ◽  
F.R. Cruickshank ◽  
R. Guthrie ◽  
D. Pugh ◽  
I.J.M. Weir

1981 ◽  
Vol 59 (11) ◽  
pp. 1615-1621 ◽  
Author(s):  
Scott D. Tanner ◽  
Gervase I. Mackay ◽  
Diethard K. Bohme

Flowing afterglow measurements are reported which provide rate constants and product identifications at 298 ± 2 K for the gas-phase reactions of OH− with CH3OH, C2H5OH, CH3OCH3, CH2O, CH3CHO, CH3COCH3, CH2CO, HCOOH, HCOOCH3, CH2=C=CH2, CH3—C≡CH, and C6H5CH3. The main channels observed were proton transfer and solvation of the OH−. Hydration with one molecule of H2O was observed either to reduce the rate slightly and lead to products which are the hydrated analogues of the "nude" reaction, or to stop the reaction completely, k ≤ 10−12 cm3 molecule−1 s−1. The reaction of OH−•H2O with CH3—C≡CH showed an uncertain intermediate behaviour.


1979 ◽  
Vol 57 (12) ◽  
pp. 1518-1523 ◽  
Author(s):  
Gervase I. Mackay ◽  
Scott D. Tanner ◽  
Alan C. Hopkinson ◽  
Diethard K. Bohme

Rate constants measured with the flowing afterglow technique at 298 ± 2 K are reported for the proton-transfer reactions of H3O+ with CH2O, CH3CHO, (CH3)2CO, HCOOH, CH3COOH, HCOOCH3, CH3OH, C2H5OH, (CH3)2O, and CH2CO. Dissociative proton-transfer was observed only with CH3COOH. The rate constants are compared with the predictions of various theories for ion–molecule collisions. The protonation is discussed in terms of the energetics and mechanisms of various modes of dissociation.


1981 ◽  
Vol 59 (15) ◽  
pp. 2412-2416 ◽  
Author(s):  
John A. Stone ◽  
Margaret S. Lin ◽  
Jeffrey Varah

The reactivity of the dimethylchloronium ion with a series of aromatic hydrocarbons has been studied in a high pressure mass spectrometer ion source using the technique of reactant ion monitoring. Benzene is unreactive but all others, from toluene to mesitylene, react by CH3+ transfer to yield σ-bonded complexes. The relative rate of reaction increases with increasing exothermicity in line with current theories of nucleophilic displacement reactions.


2003 ◽  
Vol 107 (34) ◽  
pp. 6603-6608 ◽  
Author(s):  
Woojin Lee ◽  
Philip S. Stevens ◽  
Ronald A. Hites

Sign in / Sign up

Export Citation Format

Share Document