MAGNETIZATION AND INTRAGRANULAR CRITICAL CURRENT DENSITY IN Yb1Ba2Cu3O7−x HIGH TEMPERATURE SUPERCONDUCTOR

1995 ◽  
Vol 09 (28) ◽  
pp. 3715-3723
Author(s):  
RAANA MAHMOOD ◽  
M. NASIR KHAN ◽  
M. S. ZAFAR ◽  
FARID A. KHWAJA ◽  
A. WAHEED

The Yb 1 Ba 2 Cu 3 O 7−x samples have been prepared by the solid state reaction using the appropriate amount of Yb 2 O 3, BaCO 3, and CuO powders and characterized them using X-ray diffraction and electrical resistivity techniques. The X-ray diffraction pattern of the sample shows an orthorhombic structure refined in the space group Pmmm. The critical current densities are calculated from magnetization measurements over a temperature range 77 K to 86 K, and in magnetic fields up to 2 KOe. The intragrain critical current density is estimated to range from 5.24 × 106 ( A/cm 2) at an applied field of 0.2 KOe to 1.01 × 106 ( A/cm 2) at an applied field of 2 KOe at T = 77 K in this sample.

2011 ◽  
Vol 1308 ◽  
Author(s):  
Linfei Liu ◽  
Yijie Li ◽  
Huaran Liu ◽  
Xiaokun Song ◽  
Dan Hong ◽  
...  

ABSTRACTIn order to deposit YBCO coated conductor with high critical current densities on rolling assisted biaxially textured Ni-W tapes, this paper has systematically studied the influence of deposition conditions on the orientation, in-plane texture and surface morphology of buffers and superconducting layers. It was found that the crystalline alignment and the in-plane texture of cerium oxide cap-layers were well improved by optimizing deposition parameters. The full width at half maximum of phi-scan x-ray diffraction peaks were reduced from original values of 7-8 degrees to 5-6 degrees. A high critical current density of 4.6×106 A/cm2 has been achieved on optimized buffer layers. This value is comparable with the critical current density of YBCO thin films deposited on single crystalline substrates.


2020 ◽  
Vol 981 ◽  
pp. 59-65
Author(s):  
Muhammad Hafiz Mazwir ◽  
Bryan Andrew Balasan ◽  
Farah Hanani Zulkifli ◽  
Roslan Abd-Shukor

Effect of complex magnetic oxide Co0.5Ni0.5Fe2O4 (CNFO) nanoparticles addition in (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223) superconductor tapes was investigated. Ultrafine Bi-2223 powder precursor was prepared via co-precipitation method and was added with 0.01 – 0.05 wt.% Co0.5Ni0.5Fe2O4 nanoparticles during the final heating stage. The sample with 0.01 wt.% addition, Bi-2223(CNFO)0.01 was found to have the highest critical current density, Jc. This sample were then chosen to be fabricated into Ag-sheathed superconductor tapes using the powder-in-tube (PIT) method. The tapes were sintered for 50 and 100 h at 845 °C. The phase, microstructure and Jc of the samples were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and four point probe, respectively. Jc of Ag-sheathed Bi-2223(CNFO)0.01 tapes sintered for 100 h was 19830 A/cm2 at 30 K and 3970 A/cm2 at 77 K compared to tapes without addition which showed a much lower Jc(6370 A/cm2 at 30 K). This study showed that CNFO nanoparticles could act as an effective flux pinning centers to enhance the critical current density in the Bi-2223 superconductor.


1987 ◽  
Vol 01 (02) ◽  
pp. 277-280 ◽  
Author(s):  
Xin Jin ◽  
Huimin Shao ◽  
Guiqin Wang ◽  
Mu Lu ◽  
Hanhe Zhang ◽  
...  

A high-Tc superconductor YBa2Cu3 Snx07+z was characterized. We observed the existence about 90K superconductivity in variety of compositions. The samples were examined by x-ray diffraction , Mössbauer, SEM and EDS. Their structure are still ABO3 perovskite but part of Cu atoms are displaced by Sn. It was observed that when the x increased the critical current density were increased based on the measurements of magnetic hysteresis.


1990 ◽  
Vol 5 (11) ◽  
pp. 2610-2612 ◽  
Author(s):  
Kwangsoo No ◽  
Dae-Shik Chung ◽  
Jae-Myung Kim

Textured bulk YBa2Cu3Ox superconductor samples were fabricated using directional growth of superconductor grains reacted from Y2BaCuO5, BaCuO2, and CuO powder mixtures. The samples consisted of several mm long grains aligned parallel to the growth direction. The microstructure observation and x-ray diffraction analysis showed that the grains have a preferred orientation to improve critical current density.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
S. Imai ◽  
S. Itou ◽  
S. Ishida ◽  
Y. Tsuchiya ◽  
A. Iyo ◽  
...  

Abstract Improvement of the critical current density (Jc) of superconducting wires/tapes is one of the key issues in the field of superconductivity applications. Here we report the fabrication of a silver-sheathed Ba1−xNaxFe2As2 (BaNa-122) superconducting tape by using a powder-in-tube technique and its superconducting properties, in particular transport Jc, as well as the tape-core texture. The optimally-doped BaNa-122 tape with Na concentration x = 0.4 exhibits the superconducting critical temperature (Tc) of 33.7 K and high transport Jc of 4 × 104 A/cm2 at 4.2 K in a magnetic field of 4 T. Patterns of x-ray diffraction for the superconducting core show that the degree of c-axis orientation is significantly enhanced through the tape fabrication process. The tendency of c-axis orientation is advantageous for achieving higher Jc, suggesting the high potential of BaNa-122 for superconducting wire/tape applications.


Author(s):  
S. Soltanian ◽  
M. Delfany ◽  
X.L. Wang ◽  
M.J. Qin ◽  
H.K. Liu ◽  
...  

MgB2 polycrystalline bulk samples with additions of 0, 5, 10 and 20% wt.% nano-sized BN powders were prepared using the reaction in-situ method. All the samples were sintered at 850°C for 1h in Ar. All the samples were characterized by X-ray diffraction, scanning electron microscopy (SEM) and magnetic measurements. The X-ray diffraction patterns show that the BN does not react with Mg and B during the heat treatment and remains as a separate phase. The synthesized materials thus contain two separate BN and MgB2 phases. In addition, the samples contain a small, almost constant amount of MgO. SEM shows that the samples contain MgB2 grains with average grain sizes of about 250 nm. Magnetic measurement results show that the critical current density and irreversibility fields decrease slightly as the BN level increases. The Tc drops slightly from 38.9 to 38.2 K and has a sharp transition with a transition width of less than 1 K. The field dependence of Jc for all the samples is also presented.


2020 ◽  
Vol 301 ◽  
pp. 202-208
Author(s):  
E.S. Nurbaisyatul ◽  
H. Azhan ◽  
Kasim Azman ◽  
Norazila Ibrahim ◽  
Siti Fatimah Saipuddin

The sample with nominal composition of Bi1.6Pb0.4Sr2Ca2-xEuxCu3Oy where x = 0.000, 0.0025, 0.020, 0.050 and 0.100 were synthesized through solid state reaction method. The effect of Eu2O3 nanoparticles doping on the superconducting and structural properties were studied by means of critical temperature, TC, critical current density, JC, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The amount of 2223 phase gradually decreased with the increment of Eu concentration which indicates that Eu nanoparticles substitution at Ca site favours the growth of 2212 phases. The sample with higher porosity was found to be decreased in critical temperature, TC as well as critical current density, JC due to the lack of effective surface area for current flowing. The best superconducting properties were observed at x = 0.0025 substitutes into Ca site for Bi (Pb)-2223 host sample.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Nur Jannah Azman ◽  
Huda Abdullah ◽  
Roslan Abd-Shukor

The effect of different nanosized Co3O4(10, 30, and 50 nm) addition on the Bi1.6Pb0.4Sr2Ca2Cu3O10(Co3O4)xsuperconductor withx=0–0.05 wt.% has been investigated using X-ray diffraction method, scanning electron microscopy, transition temperature, and critical current densityJcmeasurements. The samples were prepared by the conventional solid-state reaction method. Samples withx=0.01 wt.% Co3O4(10 nm) showed the highestTc-zeroat 102 K. The highestJcwas observed in thex=0.03 wt.% Co3O4(10 nm) andx=0.02 wt.% Co3O4(30 nm) samples. At 77 K,Jcof the 10 nm and 30 nm Co3O4added samples was 6 and 13 times larger than the nonadded samples, respectively. Small addition of Co3O4nanoparticles in the Bi1.6Pb0.4Sr2Ca2Cu3O10(Bi-2223) samples enhanced the critical current density and the phase formation. The larger Co3O4nanoparticle (50 nm) had a greater degradation affect on superconductivity of the Bi-2223 phase.


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


2018 ◽  
Vol 16 (38) ◽  
Author(s):  
Amal K. Jassim

Samples of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductor were prepared by solid-state reaction method to study the effects of gold nanoparticles addition to the superconducting system, Nano-Au was introduced by small weight percentages (0.25, 0.50, 0.75, 1.0, and 1.25 weight %). Phase identification and microstructuralcharacterization of the samples were investigated using XRD and SEM. Moreover, DC electrical resistivity as a function of the temperature, critical current density Jc, AC magnetic susceptibility, and DC magnetization measurements were carried to evaluate the relative performance of samples. x-ray diffraction analysis showed that both (Bi,Pb)-2223 and Bi-2212 phases coexist in the samples having an orthorhombic crystal structure. Both the onset critical temperatures Tc (onset) and zero electrical resistivity critical temperatures Tc (R=0) of the samples were determined from the DC electrical resistivity measurements. An improvement of the superconducting transition temperature of 6.36 % was obtained with increasing Au nanoparticles to x = 1.25 wt.%, while the critical current density is improved by 220 %. AC magnetic susceptibility measurement showed that the diamagnetic fraction and intergranular coupling of the x = 1.25 wt.% sample are greater than those of the others. The variation of magnetization with temperature (M-T curve) of the samples was measured by cooling the sample in zero fields (ZFC) and an applied field of 10 Oe (FC). The results of AC magnetic susceptibility and DC magnetization measurements were in good agreement with DC electrical resistivity measurement.


Sign in / Sign up

Export Citation Format

Share Document