Impact of Eu Nanoparticles Substitution for Ca Site in Bi(Pb)-2223 Cuprates Superconductor

2020 ◽  
Vol 301 ◽  
pp. 202-208
Author(s):  
E.S. Nurbaisyatul ◽  
H. Azhan ◽  
Kasim Azman ◽  
Norazila Ibrahim ◽  
Siti Fatimah Saipuddin

The sample with nominal composition of Bi1.6Pb0.4Sr2Ca2-xEuxCu3Oy where x = 0.000, 0.0025, 0.020, 0.050 and 0.100 were synthesized through solid state reaction method. The effect of Eu2O3 nanoparticles doping on the superconducting and structural properties were studied by means of critical temperature, TC, critical current density, JC, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The amount of 2223 phase gradually decreased with the increment of Eu concentration which indicates that Eu nanoparticles substitution at Ca site favours the growth of 2212 phases. The sample with higher porosity was found to be decreased in critical temperature, TC as well as critical current density, JC due to the lack of effective surface area for current flowing. The best superconducting properties were observed at x = 0.0025 substitutes into Ca site for Bi (Pb)-2223 host sample.

2015 ◽  
Vol 1107 ◽  
pp. 601-605
Author(s):  
S.A. Senawi ◽  
H. Azhan ◽  
W.N.F.W. Zainal ◽  
W.A.W. Razali ◽  
A. Nazree ◽  
...  

This paper reports on the properties of YBa2Cu3Od (Y123) and YCaBa4Cu6Oy (Y146) with non-porous and porous structures. The relationship between calcium doping and critical temperature (Tc) was studied to determine the optimal superconducting properties. A series of heating and grinding via solid state reaction method was used to fabricate the ceramic materials. The electrical properties were investigated via critical temperature, TC and critical current density, JC using the resistivity measurement system (RMS). Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) were used to analyze the material morphology and structure, respectively. The orthorhombicity increased due to less porosity of the samples. The calcium presence partially replaced larger Ba(II) site and degraded orthorhombicity. The highest critical current density (JC) was porous YCaBa2Cu3Oy which was 2.32 A/cm2 compared to 0.75 A/cm2 for porous YCaBa4Cu6Oy at 60 K. The critical temperature for porous structure was less than non porous structure for Ca doped Y146 system which was 69.9 K and 67.9 K. SEM micrograph unveiled that the Jc was induced significantly by continuity of grain formation via grain size. Pores homogenized the grains surface quality and connectivity due to strain release thus increasing effective cross section of the sample for current density (Jc) over the vast areas.


2014 ◽  
Vol 69 (2) ◽  
Author(s):  
M. A. Suazlina ◽  
S. Y. S. Yusainee ◽  
H. Azhan ◽  
R. Abd-Shukor ◽  
R. M. Mustaqim

The effect of Y2O3 nanoparticle addition on the superconducting properties of Bi1.6Pb0.4Sr 2CaCu 2Oy have been investigated. The samples were prepared using high purity oxide powders via solid state reaction method. Y2O3 nanoparticle with 0.0-1.0 wt. % was systematically added to the well balanced Bi1.6Pb0.4 Sr2CaCu2Oy before sinter in order to trace the existense of nanoparticle addition in the system. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and critical current density, Jc. The current density measurement was done via four-point probe method under zero magnetic fields. The critical current density, Jc and superconductivity transition temperature, Tc for sample with addition of Y2O3 nanoparticle were found to be higher than the pure sample. The optimal addition of Y2O3 nanoparticle to the sample Bi-2212 system was found at 0.7 wt. %. The crystallographic structure of all samples was evidenced to be orthorhombic where a ≠ b ≠ c. Changes in superconducting properties of Y2O3 nanoparticle added Bi-2212 system were discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Nur Jannah Azman ◽  
Huda Abdullah ◽  
Roslan Abd-Shukor

The effect of different nanosized Co3O4(10, 30, and 50 nm) addition on the Bi1.6Pb0.4Sr2Ca2Cu3O10(Co3O4)xsuperconductor withx=0–0.05 wt.% has been investigated using X-ray diffraction method, scanning electron microscopy, transition temperature, and critical current densityJcmeasurements. The samples were prepared by the conventional solid-state reaction method. Samples withx=0.01 wt.% Co3O4(10 nm) showed the highestTc-zeroat 102 K. The highestJcwas observed in thex=0.03 wt.% Co3O4(10 nm) andx=0.02 wt.% Co3O4(30 nm) samples. At 77 K,Jcof the 10 nm and 30 nm Co3O4added samples was 6 and 13 times larger than the nonadded samples, respectively. Small addition of Co3O4nanoparticles in the Bi1.6Pb0.4Sr2Ca2Cu3O10(Bi-2223) samples enhanced the critical current density and the phase formation. The larger Co3O4nanoparticle (50 nm) had a greater degradation affect on superconductivity of the Bi-2223 phase.


2011 ◽  
Vol 324 ◽  
pp. 241-244 ◽  
Author(s):  
R. Mawassi ◽  
R. Awad ◽  
Mohamad Roumie ◽  
M. Kork ◽  
I. Hassan

The major limitation of Bi-system superconductor applications is the intergrain weak links and weak flux pinning capability producing low critical current density of the Bibased phases. In order to enhance these characteristics and other superconducting properties, effective flux pinning centers are introduced into high temperature superconductors. In this work, different weight percentages of ZnO nano oxide were introduced at the final stage of the Bi1.8Pb0.4Sr2Ca2Cu3O10-y superconductor preparation process. Phase characterization was completed by X-ray diffraction (XRD). Exact constitution of the samples was determined using particle induced X-ray emission (PIXE). Granular and microstructure were investigated using scanning electron microscopy (SEM). Electrical resistivity as function of the temperature was carried to evaluate the relative performance of samples, and finally, E-J characteristic curves were obtained at 77K. Using 0.4 ZnO weight percentage, the electrical and granular properties were greatly enhanced, indicating more efficient pinning mechanisms. A critical current density of 949 A/cm2 was obtained which represents more than twice the value obtained for the pure sample (Jc= 445 A/cm2).


2020 ◽  
Vol 981 ◽  
pp. 59-65
Author(s):  
Muhammad Hafiz Mazwir ◽  
Bryan Andrew Balasan ◽  
Farah Hanani Zulkifli ◽  
Roslan Abd-Shukor

Effect of complex magnetic oxide Co0.5Ni0.5Fe2O4 (CNFO) nanoparticles addition in (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223) superconductor tapes was investigated. Ultrafine Bi-2223 powder precursor was prepared via co-precipitation method and was added with 0.01 – 0.05 wt.% Co0.5Ni0.5Fe2O4 nanoparticles during the final heating stage. The sample with 0.01 wt.% addition, Bi-2223(CNFO)0.01 was found to have the highest critical current density, Jc. This sample were then chosen to be fabricated into Ag-sheathed superconductor tapes using the powder-in-tube (PIT) method. The tapes were sintered for 50 and 100 h at 845 °C. The phase, microstructure and Jc of the samples were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and four point probe, respectively. Jc of Ag-sheathed Bi-2223(CNFO)0.01 tapes sintered for 100 h was 19830 A/cm2 at 30 K and 3970 A/cm2 at 77 K compared to tapes without addition which showed a much lower Jc(6370 A/cm2 at 30 K). This study showed that CNFO nanoparticles could act as an effective flux pinning centers to enhance the critical current density in the Bi-2223 superconductor.


1987 ◽  
Vol 01 (02) ◽  
pp. 277-280 ◽  
Author(s):  
Xin Jin ◽  
Huimin Shao ◽  
Guiqin Wang ◽  
Mu Lu ◽  
Hanhe Zhang ◽  
...  

A high-Tc superconductor YBa2Cu3 Snx07+z was characterized. We observed the existence about 90K superconductivity in variety of compositions. The samples were examined by x-ray diffraction , Mössbauer, SEM and EDS. Their structure are still ABO3 perovskite but part of Cu atoms are displaced by Sn. It was observed that when the x increased the critical current density were increased based on the measurements of magnetic hysteresis.


1990 ◽  
Vol 5 (11) ◽  
pp. 2610-2612 ◽  
Author(s):  
Kwangsoo No ◽  
Dae-Shik Chung ◽  
Jae-Myung Kim

Textured bulk YBa2Cu3Ox superconductor samples were fabricated using directional growth of superconductor grains reacted from Y2BaCuO5, BaCuO2, and CuO powder mixtures. The samples consisted of several mm long grains aligned parallel to the growth direction. The microstructure observation and x-ray diffraction analysis showed that the grains have a preferred orientation to improve critical current density.


1995 ◽  
Vol 09 (28) ◽  
pp. 3715-3723
Author(s):  
RAANA MAHMOOD ◽  
M. NASIR KHAN ◽  
M. S. ZAFAR ◽  
FARID A. KHWAJA ◽  
A. WAHEED

The Yb 1 Ba 2 Cu 3 O 7−x samples have been prepared by the solid state reaction using the appropriate amount of Yb 2 O 3, BaCO 3, and CuO powders and characterized them using X-ray diffraction and electrical resistivity techniques. The X-ray diffraction pattern of the sample shows an orthorhombic structure refined in the space group Pmmm. The critical current densities are calculated from magnetization measurements over a temperature range 77 K to 86 K, and in magnetic fields up to 2 KOe. The intragrain critical current density is estimated to range from 5.24 × 106 ( A/cm 2) at an applied field of 0.2 KOe to 1.01 × 106 ( A/cm 2) at an applied field of 2 KOe at T = 77 K in this sample.


2015 ◽  
Vol 1107 ◽  
pp. 616-621
Author(s):  
M. Robaiah ◽  
H. Azhan ◽  
K. Azman ◽  
I.N. Syuhaida ◽  
C.M.N. Azura ◽  
...  

The effects of sintering time in high and low density Bi-2223 phase formation have been investigated. The samples were prepared by the solid-state reaction method at various sintering times ranging from 24, 48, 72 and 96 hours. Sucrose was added during palletization and after heated at 400°C for two hours the sucrose was removed and hence low density sample was created. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and critical current density. The transition temperature varies between 102 K and 96 K with increasing of sintering times. The optimal sintering time of the samples Bi-2223 system was found at 850°C for 72 hours. The critical current density,JCof high density and low density Bi-2223 was measured to be 7.547 A/cm2and 8.333 A/cm2respectively at 77 K under zero magnetic field. The critical current density,JCand superconductivity transition temperature,TCof low density were found to be higher than the pure samples. The critical transition temperature increased with a short gap betweenTConsetandTC zero. The most intense peak in the XRD pattern of sample at sintering time 72 hours belong to the high-TCphase which also indicates an increase in the volume fraction of the high-TCphase with optimum sintering time.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
S. Imai ◽  
S. Itou ◽  
S. Ishida ◽  
Y. Tsuchiya ◽  
A. Iyo ◽  
...  

Abstract Improvement of the critical current density (Jc) of superconducting wires/tapes is one of the key issues in the field of superconductivity applications. Here we report the fabrication of a silver-sheathed Ba1−xNaxFe2As2 (BaNa-122) superconducting tape by using a powder-in-tube technique and its superconducting properties, in particular transport Jc, as well as the tape-core texture. The optimally-doped BaNa-122 tape with Na concentration x = 0.4 exhibits the superconducting critical temperature (Tc) of 33.7 K and high transport Jc of 4 × 104 A/cm2 at 4.2 K in a magnetic field of 4 T. Patterns of x-ray diffraction for the superconducting core show that the degree of c-axis orientation is significantly enhanced through the tape fabrication process. The tendency of c-axis orientation is advantageous for achieving higher Jc, suggesting the high potential of BaNa-122 for superconducting wire/tape applications.


Sign in / Sign up

Export Citation Format

Share Document