TELEPORTATION OF ANY FORM OF SINGLE-MODE QUANTUM STATES

2006 ◽  
Vol 20 (02n03) ◽  
pp. 97-103
Author(s):  
TONG-QIANG SONG

By using the two-mode Einstein–Podolsky–Rosen (EPR) pair eigenstates or the two-mode squeezed vacuum as quantum channel we study the quantum teleportation of any form of single-mode quantum states (which include discrete and continuous variable quantum states). The elegant properties of the EPR pair eigenstates bring much convenience to our discussion.

2011 ◽  
Vol 09 (03) ◽  
pp. 993-1003
Author(s):  
YE-QI ZHANG ◽  
JING-BO XU

We investigate the entanglement swapping of the continuous variable states by taking the pair Schrödinger cat states as the input entangled states, in which the two-mode squeezed vacuum and the pair cat states serve as the quantum channel, respectively. The entanglement of the initial states as well as the final states is analyzed by adopting the logarithmic negativity as the measure of entanglement. The quantum teleportation task by exploiting the swapped states as the quantum channel is also considered, where a coherent state serves as the target state and the average fidelity is examined.


2021 ◽  
pp. 2150249
Author(s):  
Vikram Verma

In this paper, by utilizing a nine-qubit entangled state as a quantum channel, we propose new schemes for symmetric and asymmetric cyclic controlled quantum teleportation (CYCQT). In our proposed schemes, four participants Alice, Bob, Charlie and David teleport their unknown quantum states cyclically among themselves with the help of a controller Eve. No participants can reconstruct the original states sent from the respective senders without the permission of the controller. Also, by considering same nine-qubit entangled state as a quantum channel, we propose a generalized scheme for CYCQT of multi-qubit states. In contrast to the previous CYCQT schemes involving three communicators and a controller, there are four communicators and a controller in the proposed schemes. Also, compared with previous CYCQT schemes, our proposed CYCQT schemes require less consumption of quantum resource and the intrinsic efficiency of the generalized scheme increases with the increase of number of qubits in the information states.


2018 ◽  
Vol 4 (10) ◽  
pp. eaas9401 ◽  
Author(s):  
Meiru Huo ◽  
Jiliang Qin ◽  
Jialin Cheng ◽  
Zhihui Yan ◽  
Zhongzhong Qin ◽  
...  

Quantum teleportation, which is the transfer of an unknown quantum state from one station to another over a certain distance with the help of nonlocal entanglement shared by a sender and a receiver, has been widely used as a fundamental element in quantum communication and quantum computation. Optical fibers are crucial information channels, but teleportation of continuous variable optical modes through fibers has not been realized so far. Here, we experimentally demonstrate deterministic quantum teleportation of an optical coherent state through fiber channels. Two sub-modes of an Einstein-Podolsky-Rosen entangled state are distributed to a sender and a receiver through a 3.0-km fiber, which acts as a quantum resource. The deterministic teleportation of optical modes over a fiber channel of 6.0 km is realized. A fidelity of 0.62 ± 0.03 is achieved for the retrieved quantum state, which breaks through the classical limit of1/2. Our work provides a feasible scheme to implement deterministic quantum teleportation in communication networks.


2019 ◽  
Vol 33 (05) ◽  
pp. 1950033 ◽  
Author(s):  
Ming-Hui Zhang ◽  
Jin-Ye Peng ◽  
Zheng-Wen Cao

Quantum dialogue can realize the mutual transmission of secret information between two legal users. In most of the existing quantum dialogue protocols, the information carriers applied in quantum dialogue are discrete variable (DV) quantum states. However, there are certain limitations on the preparation and detection of DV quantum states with current techniques. Continuous variable (CV) quantum states can overcome these problems effectively while improving the quantum channel capacity. In this paper, we propose a quantum dialogue protocol with four-mode continuous variable GHZ state. Compared with the existing CV-based quantum dialogue protocols, the protocol allows two users to transmit two groups of secret information with different lengths to each other simultaneously. The channel capacity of the protocol has been improved as each traveling mode carries two- or four-bits of information. In addition, the protocol has been proved to be secure against information leakage problem and some common attacks, such as beam splitter attack and intercept-and-resend attack.


2017 ◽  
Vol 15 (08) ◽  
pp. 1740002
Author(s):  
Yong Siah Teo ◽  
Christian R. Müller ◽  
Hyunseok Jeong ◽  
Zdeněk Hradil ◽  
Jaroslav Řeháček ◽  
...  

Wigner and Husimi quasi-distributions, owing to their functional regularity, give the two archetypal and equivalent representations of all observable-parameters in continuous-variable quantum information. Balanced homodyning (HOM) and heterodyning (HET) that correspond to their associated sampling procedures, on the other hand, fare very differently concerning their state or parameter reconstruction accuracies. We present a general theory of a now-known fact that HET can be tomographically more powerful than balanced homodyning to many interesting classes of single-mode quantum states, and discuss the treatment for two-mode sources.


2010 ◽  
Vol 24 (10) ◽  
pp. 1271-1277 ◽  
Author(s):  
LI-YUN HU ◽  
HONG-YI FAN

By virtue of the entangled state representation, we show that the quantum teleportated state in Bob, after Alice makes an Einstein–Podolsky–Rosen measurement and Bob makes an appropriate unitary transformation on hearing Alice's measurement result via a classical channel, is described by [Formula: see text] where F(η)≡23〈η|ρ23|η〉23, ρ23 stands for a quantum channel in 2–3 modes, |η〉23 is the bipartite entangled state, and [Formula: see text] is a displacement transform performed by Bob.


2005 ◽  
Vol 03 (supp01) ◽  
pp. 11-25 ◽  
Author(s):  
H. J. CARMICHAEL

A quantum trajectory formulation of broadband continuous variable teleportation is developed. Inputs and outputs are quasi-monochromatic quantum fields rather than single-mode quantum states. The formalism accounts for the continuous measurements of Alice and Victor and continuous displacement of the teleported field by Bob. It is applied to the teleportation of the Mollow spectrum and photon antibunching in single-atom resonance fluorescence.


Sign in / Sign up

Export Citation Format

Share Document