scholarly journals Deterministic quantum teleportation through fiber channels

2018 ◽  
Vol 4 (10) ◽  
pp. eaas9401 ◽  
Author(s):  
Meiru Huo ◽  
Jiliang Qin ◽  
Jialin Cheng ◽  
Zhihui Yan ◽  
Zhongzhong Qin ◽  
...  

Quantum teleportation, which is the transfer of an unknown quantum state from one station to another over a certain distance with the help of nonlocal entanglement shared by a sender and a receiver, has been widely used as a fundamental element in quantum communication and quantum computation. Optical fibers are crucial information channels, but teleportation of continuous variable optical modes through fibers has not been realized so far. Here, we experimentally demonstrate deterministic quantum teleportation of an optical coherent state through fiber channels. Two sub-modes of an Einstein-Podolsky-Rosen entangled state are distributed to a sender and a receiver through a 3.0-km fiber, which acts as a quantum resource. The deterministic teleportation of optical modes over a fiber channel of 6.0 km is realized. A fidelity of 0.62 ± 0.03 is achieved for the retrieved quantum state, which breaks through the classical limit of1/2. Our work provides a feasible scheme to implement deterministic quantum teleportation in communication networks.

2017 ◽  
Vol 95 (5) ◽  
pp. 498-503
Author(s):  
Syed Tahir Amin ◽  
Aeysha Khalique

We present our model to teleport an unknown quantum state using entanglement between two distant parties. Our model takes into account experimental limitations due to contribution of multi-photon pair production of parametric down conversion source, inefficiency, dark counts of detectors, and channel losses. We use a linear optics setup for quantum teleportation of an unknown quantum state by the sender performing a Bell state measurement. Our theory successfully provides a model for experimentalists to optimize the fidelity by adjusting the experimental parameters. We apply our model to a recent experiment on quantum teleportation and the results obtained by our model are in good agreement with the experimental results.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 768 ◽  
Author(s):  
Francesco De De Martini ◽  
Fabio Sciarrino

Quantum teleportation is one of the most striking consequence of quantum mechanics and is defined as the transmission and reconstruction of an unknown quantum state over arbitrary distances. This concept was introduced for the first time in 1993 by Charles Bennett and coworkers, it has then been experimentally demonstrated by several groups under different conditions of distance, amount of particles and even with feed forward. After 20 years from its first realization, this contribution reviews the experimental implementations realized at the Quantum Optics Group of the University of Rome La Sapienza.


2006 ◽  
Vol 20 (02n03) ◽  
pp. 97-103
Author(s):  
TONG-QIANG SONG

By using the two-mode Einstein–Podolsky–Rosen (EPR) pair eigenstates or the two-mode squeezed vacuum as quantum channel we study the quantum teleportation of any form of single-mode quantum states (which include discrete and continuous variable quantum states). The elegant properties of the EPR pair eigenstates bring much convenience to our discussion.


1993 ◽  
Vol 70 (13) ◽  
pp. 1895-1899 ◽  
Author(s):  
Charles H. Bennett ◽  
Gilles Brassard ◽  
Claude Crépeau ◽  
Richard Jozsa ◽  
Asher Peres ◽  
...  

Author(s):  
Mrittunjoy Guha Majumdar

Multipartite entanglement is a resource for application in disparate protocols, of computing, communication and cryptography. In this paper, generation, characterisation and application of a genuine genuinely entangled seven-qubit resource state is studied. Theoretical schemes for quantum teleportation of arbitrary one, two and three qubits states, bidirectional teleportation of arbitrary two qubit states and probabilistic circular controlled teleportation as well as three schemes for undertaking tripartite quantum state sharing are presented.


2002 ◽  
Vol 2 (2) ◽  
pp. 151-165
Author(s):  
S.J. van Enk ◽  
C.A. Fuchs

Optical implementations of quantum communication protocols typically involve laser fields. However, the standard description of the quantum state of a laser field is surprisingly insufficient to understand the quantum nature of such implementations. In this paper, we give a quantum information-theoretic description of a propagating continuous-wave laser field and reinterpret various quantum-optical experiments in light of this. A timely example is found in a recent controversy about the quantum teleportation of continuous variables. We show that contrary to the claims of T. Rudolph and B.C. Sanders [Phys. Rev. Lett. {\bf 87}, 077903 (2001)], a conventional laser can be used for quantum teleportation with continuous variables and for generating continuous-variable quantum entanglement. Furthermore, we show that optical coherent states do play a privileged role in the description of propagating laser fields even though they cannot be ascribed such a role for the intracavity field.


2010 ◽  
Vol 24 (10) ◽  
pp. 1271-1277 ◽  
Author(s):  
LI-YUN HU ◽  
HONG-YI FAN

By virtue of the entangled state representation, we show that the quantum teleportated state in Bob, after Alice makes an Einstein–Podolsky–Rosen measurement and Bob makes an appropriate unitary transformation on hearing Alice's measurement result via a classical channel, is described by [Formula: see text] where F(η)≡23〈η|ρ23|η〉23, ρ23 stands for a quantum channel in 2–3 modes, |η〉23 is the bipartite entangled state, and [Formula: see text] is a displacement transform performed by Bob.


2011 ◽  
Vol 25 (08) ◽  
pp. 1135-1142 ◽  
Author(s):  
YONG SUN ◽  
BEN-JIN SUN ◽  
MEI-LI SHI ◽  
ZHONG-XIAO MAN ◽  
YUN-JIE XIA

We investigate the problem of teleportation of tripartite entangled coherent state (ECS) using linear optical devices such as beam splitters, phase shifters, and two-mode number measurements. The scheme is based on the maximally four-partite ECS with bipartite maximal entanglement as the quantum channel to teleportation tripartite ECS. Our scheme is efficient in the sense that for mean number of photons equal to 2, the minimum of average fidelity (MAF) for teleportation an arbitrary tripartite entangled state is 1-2.3 × 10-7. We also generalize the tripartite scheme into multipartite case and calculate the MAF for the schemes in multipartite cases.


Sign in / Sign up

Export Citation Format

Share Document