MEASUREMENTS OF HIGH ENERGY X-RAY DOSE DISTRIBUTIONS USING MULTI-DIMENSIONAL FIBER-OPTIC RADIATION DETECTORS

2008 ◽  
Vol 22 (11) ◽  
pp. 797-802 ◽  
Author(s):  
KYOUNG WON JANG ◽  
DONG HYUN CHO ◽  
SANG HUN SHIN ◽  
BONGSOO LEE ◽  
SOON-CHEOL CHUNG ◽  
...  

In this study, we have fabricated multi-dimensional fiber-optic radiation detectors with organic scintillators, plastic optical fibers and photo-detectors such as photodiode array and a charge-coupled device. To measure the X-ray dose distributions of the clinical linear accelerator in the tissue-equivalent medium, we have fabricated polymethylmethacrylate phantoms which have one-dimensional and two-dimensional fiber-optic detector arrays inside. The one-dimensional and two-dimensional detector arrays can be used to measure percent depth doses and surface dose distributions of high energy X-ray in the phantom respectively.

2007 ◽  
Vol 14 (5) ◽  
pp. 351-354 ◽  
Author(s):  
Bongsoo Lee ◽  
Kyoung Won Jang ◽  
Dong Hyun Cho ◽  
Wook Jae Yoo ◽  
Hyung Shik Kim ◽  
...  

2008 ◽  
Vol 45 (sup5) ◽  
pp. 1-4
Author(s):  
Kyoung Won Jang ◽  
Dong Hyun Cho ◽  
Wook Jae Yoo ◽  
Sang Hun Shin ◽  
Hyung Sik Kim ◽  
...  

2006 ◽  
Vol 321-323 ◽  
pp. 992-995 ◽  
Author(s):  
Bong Soo Lee ◽  
Dong Hyun Cho ◽  
Soon Cheol Chung ◽  
Jeong Han Yi ◽  
Kyung Won Chang ◽  
...  

The aim of this study is to develop a new method to measure one-dimensional dose distribution of high-energy electron using a miniature fiber-optic radiation sensor. The measurements are made by a thin plastic optical fiber with an organic scintillating sensor tip. The scintillating light in the visible wavelength range is guided to a silicon photodiode by plastic optical fiber in order to convert light output to electrical signal. The one-dimensional spatial dependence of elctron beam is measured by moving the sensor tip with uniform speed. It is shown that this fiber-optic radiation sensor has better spatial resolution than conventional ion chamber and it needs much less time to measure one-dimensional dose distribution in the high radiation fields.


2020 ◽  
Vol 75 (4) ◽  
pp. 341-345
Author(s):  
Xiao-Li Liu ◽  
Jing-Long Liu ◽  
Hong-Mei Yang ◽  
Ai-Quan Jia ◽  
Qian-Feng Zhang

AbstractCo-crystallization of C-propyl-pyrogallol[4]arene (PgC3) with 4,4′-bipyridine (bpy) in ethanol afforded a multi-component complex (PgC3) · 3(bpy) ·(EtOH) (1) that consists of a one-dimensional brick-wall framework, which was formed by four pyrogallol[4]arene molecules and two juxtaposed bpy molecules, entrapping two other bpy molecules as guests within each cavity. Heating a mixture of PgC3 and trans-1,2-bis-(4-pyridyl)ethylene (bpe) in an ethanol-water mixed solvent allowed the isolation of a multi-component complex (PgC3) ·(bpe) · 2(EtOH) ·(H2O) (2), which has a two-dimensional wave-like polymer structure with the bpe molecules embedded in the wave trough between two PgC3 molecules. Single-crystal X-ray crystallography was utilized to investigate the hydrogen bonding networks of the multi-component complexes 1 and 2.


1982 ◽  
Vol 16 ◽  
Author(s):  
P. A. Glasow ◽  
B. O. Kolbesen

As a base material for semiconductor devices, silicon is more widely used than any other semiconductor. The physical properties, in particular the bandgap which is significantly larger than that of germanium, makes the material extremely important for electronic devices. The world's total annual production of silicon is at present some 2000 t [1]. Compared with this, the 10 kg/year of silicon that is used for detectors is rather modest. However, since work on semiconductor radiation detectors started 25 years ago, silicon in addition to germanium forms the centre of interest as the basis for production of nuclear radiation spectrometers, mainly as high energy particle detectors, but also as X-ray detectors.


Author(s):  
Kai-Long Zhong

A new one-dimensional NiIIcoordination polymer of 1,3,5-tris(imidazol-1-ylmethyl)benzene, namelycatena-poly[[aqua(sulfato-κO)hemi(μ-ethane-1,2-diol-κ2O:O′)[μ3-1,3,5-tris(1H-imidazol-1-ylmethyl)benzene-κ3N3,N3′,N3′′]nickel(II)] ethane-1,2-diol monosolvate monohydrate], {[Ni(SO4)(C18H18N6)(C2H6O2)0.5(H2O)]·C2H6O2·H2O}n, was synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The NiIIcation is coordinated by three N atoms of three different 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands, one O atom of an ethane-1,2-diol molecule, by a sulfate anion and a water molecule, forming a distorted octahedral NiN3O3coordination geometry. The tripodal 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands link the NiIIcations, generating metal–organic chains running along the [100] direction. Adjacent chains are further connected by O—H...O hydrogen bonds, resulting in a two-dimensional supermolecular architecture running parallel to the (001) plane. Another water molecule and a second ethane-1,2-diol molecule are non-coordinating and are linked to the coordinating sulfate ionsviaO—H...O hydrogen bonds.


2020 ◽  
Vol 53 (6) ◽  
pp. 1559-1561
Author(s):  
Robert B. Von Dreele ◽  
Wenqian Xu

An estimate of synchrotron hard X-ray incident beam polarization is obtained by partial two-dimensional image masking followed by integration. With the correct polarization applied to each pixel in the image, the resulting one-dimensional pattern shows no discontinuities arising from the application of the mask. Minimization of the difference between the sums of the masked and unmasked powder patterns allows estimation of the polarization to ±0.001.


Sign in / Sign up

Export Citation Format

Share Document