THE EFFECTS OF CO-DOPING OF B AND N ON THE ELECTRONIC TRANSPORT OF SINGLE-WALLED CARBON NANOTUBES

2011 ◽  
Vol 25 (14) ◽  
pp. 1211-1218 ◽  
Author(s):  
JIANWEI WEI ◽  
HUI ZENG ◽  
LICHUN PU ◽  
JUNWU LIANG ◽  
HUIFANG HU ◽  
...  

Based on first-principle calculation, the geometry and electronic transport properties of the boron and nitrogen co-doping single-walled carbon nanotubes are investigated by using density functional theory combined with non-equilibrium Green's functions. The results show that the BN atoms energetically tend to form covalent bond of BN along axis in the nanotubes. In contrast to solely B or N doping, the co-doping do not generate accepter or donor subbands near the Fermi level. The co-doping give rise to the reduction of band gap in semiconducting (10, 0) tube and, furthermore, introduces the band gap to the metallic (5, 5) tube.

2003 ◽  
Vol 772 ◽  
Author(s):  
I. Cabria ◽  
J. W. Mintmire ◽  
C. T. White

AbstractSingle walled carbon nanotubes, SWNTs, are either semiconducting, metallic, or quasimetallic. Early theoretical work based on tight-binding models predicted that the band gap of semiconducting carbon nanotubes should increase with decreasing radius and this picture was later confirmed by experiment. However, local-density functional calculations indicate that these models are not accurate for narrow carbon nanotubes, where the effects of curvature can convert nanotubes expected to be semiconductors to metals. This raises the question, what is the largest semiconducting band gap possible in a SWNT? We present results from first-principles calculations for a range of carbon nanotubes with radii between 0.15 and 1 nm. These results indicate that the (4,3) carbon nanotube has the largest band gap of all SWNTs.


2017 ◽  
Vol 129 (40) ◽  
pp. 12408-12412
Author(s):  
Belén Nieto-Ortega ◽  
Julia Villalva ◽  
Mariano Vera-Hidalgo ◽  
Luisa Ruiz-González ◽  
Enrique Burzurí ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document