Quantum fluctuations of mesoscopic RLC circuit with sources and time-dependant resistances

2015 ◽  
Vol 29 (15) ◽  
pp. 1550077
Author(s):  
B. Neouioua ◽  
F. Benamira ◽  
M. A. Benbitour

We discuss the quantization of two mesoscopic coupled RLC circuits with sources and a time-dependent resistances. We use unitary transformations to decouple the system and calculate the charge-current fluctuations for each loop. An adequate time-dependent form of resistances is used to simplify the quantum evolution of the system. We find that the charge-current fluctuations verify the Heisenberg principle and decrease when the time elapses.

The X-ray inelastic scattering phenomena during the time-dependent perturbations are described with the aid of dynamical dispersion equations coupled with charge current in the Maxwell equations towards the appearance of the Debye-Waller factor driving the absorption coefficient, either for inelastic thermal diffusion and the Compton scattering, respectively.


2010 ◽  
Vol 49 (8) ◽  
pp. 1768-1774
Author(s):  
Bao-Long Liang ◽  
Ji-Suo Wang ◽  
Shi-Xue Song ◽  
Xiang-Guo Meng

2014 ◽  
Vol 28 (27) ◽  
pp. 1450212 ◽  
Author(s):  
I. A. Pedrosa ◽  
J. L. Melo ◽  
E. Nogueira

In this paper, we use Hermitian linear invariants and the Lewis and Riesenfeld invariant method to obtain the general solution of the Schrödinger equation for a mesoscopic RLC circuit with time-dependent resistance, inductance, capacitance and a power source and represent it in terms of an arbitrary weight function. In addition, we construct Gaussian wave packet solutions for this electromagnetic oscillation circuit and employ them to calculate the quantum fluctuations of the charge and the magnetic flux as well as the associated uncertainty product. We also show that the width of the Gaussian packet and the fluctuations do not depend on the external power.


2011 ◽  
Vol 25 (31) ◽  
pp. 2353-2361 ◽  
Author(s):  
HONG-CHUN YUAN ◽  
XUE-XIANG XU ◽  
XUE-FEN XU ◽  
HONG-YI FAN

By using the partial trace method and the technique of integration within an ordered product of operators we obtain the explicit expression of the generalized thermal vacuum state (GTVS) for an RLC circuit instead of using the Takahashi–Umezawa approach. According to thermal field dynamics (TFD), namely, the expectation value of physical observables in this GTVS is equivalent to their ensemble average, based on GTVS we successfully derive the quantum fluctuations at nonzero temperature and the thermodynamical relations for the mesoscopic RLC circuit. Our results show that the higher the temperature is, the more quantum noise the RLC circuit exhibits.


Sign in / Sign up

Export Citation Format

Share Document