Influence of Rashba spin-orbit interaction and Zeeman splitting on the ground state energy of polaron in an asymmetric quantum dot

2015 ◽  
Vol 29 (22) ◽  
pp. 1550124 ◽  
Author(s):  
Zhi-Xin Li ◽  
Cheng-Hong Yin ◽  
Xiu-Yun Zhu

On the basis of Lee–Low–Pines unitary transformation, the influence of Rashba spin-orbit (RSO) interaction and Zeeman splitting on the ground state energy of polaron in an asymmetric quantum dot (AQD) is studied by using the variational method of Pekar type. The variations of the absolute ratios of the Zeeman splitting energy and the RSO coupling energy to the ground state energy of polaron with the transverse confinement length (TCL) and the longitudinal confinement length (LCL) of AQD and the magnetic field adjusting length (MFAL) are derived when the RSO interaction and the Zeeman splitting are taken into account. We find the influences of the Zeeman splitting energy and the RSO coupling energy on the ground state energy of a polaron are more dominant when the values of the TCL and the LCL are small. The absolute ratio of the Zeeman splitting energy to the ground state energy rapidly decreases with increasing the MFAL and the absolute ratio of the RSO coupling energy to the ground state energy slowly decreases with increase in MFAL when [Formula: see text], whereas the absolute ratio of the RSO coupling energy to the ground state energy rapidly increases with increase in MFAL when [Formula: see text]. The above results can be attributed to the interesting quantum size confining and spin effects.

2012 ◽  
Vol 26 (30) ◽  
pp. 1250185 ◽  
Author(s):  
ZHI-XIN LI ◽  
JING-LIN XIAO

The properties of a strong-coupled bound magnetopolaron in an asymmetric quantum dot (QD) have been investigated by using the Tokuda modified linear combination operator and the unitary transformation methods on the basis of the Huybrechts' strong-coupled model. We derive the expressions of the ground-state energy as function of the transverse and longitudinal confinement lengths, the magnetic field. Numerical calculation is performed and the results show that the ground-state energy of the bound magnetopolaron splits into two branches, taking into account the spin influences. And the ground-state energy decreases with increasing the transverse and longitudinal confinement lengths and increases with the rising of the magnetic field.


2009 ◽  
Vol 23 (12) ◽  
pp. 1547-1555 ◽  
Author(s):  
ZHIXIN LI ◽  
JINGLIN XIAO

The ground state lifetime of a magnetopolaron was investigated with electron–LO-phonon strong coupling in an asymmetric quantum dot using the linear combination operator and unitary transformation methods. Quantum transition, which cause changes of the magnetopolaron lifetime, occurs in the quantum system due to electron–phonon interaction and the influence of external temperature, that is, the magnetopolaron leaps from the ground state to the first excited state after absorbing a LO-phonon. The expressions of the ground state lifetime of the magnetopolaron as a function of the ground state energy, the transverse and longitudinal confinement lengths of quantum dot, the electron–phonon coupling strength, the cyclotron vibration frequency and the external temperature were obtained. Numerical calculations have been performed and the results show that the ground state lifetime of the magnetopolaron increases with increasing the ground state energy and the cyclotron vibration frequency, and decreases with increasing the transverse and longitudinal confinement lengths of the quantum dot, the coupling strength and the external temperature.


2019 ◽  
Vol 33 (23) ◽  
pp. 1950263
Author(s):  
Shu-Ping Shan ◽  
Shi-Hua Chen ◽  
Ren-Zhong Zhuang ◽  
Chun Hu

Influence of the magnetic field on the properties of the polaron in an asymmetric quantum dot is studied by using the Pekar variation method. The expression of the magnetopolaron ground-state energy is obtained by theoretical derivation. The relationship between the ground-state energy of the magnetopolaron with the transverse confinement strength, the longitudinal confinement strength and the magnetic field cyclotron resonance frequency are further discussed by us. Due to the crystal structure inversion asymmetry and the time inversion asymmetry, the polaron energy causes Rashba spin–orbit splitting and Zeeman splitting. Under the strong and weak magnetic fields, we discuss the dominant position of Rashba effect and Zeeman effect, respectively. Due to the presence of phonons, the polaron is more stable than the bare electron state, and the energy splitting is more stable.


1991 ◽  
Vol 05 (08) ◽  
pp. 571-579 ◽  
Author(s):  
F.V. KUSMARTSEV

We calculate the ground state energy and the magnetization of spinless fermions on a two-dimensional lattice in an external magnetic field. We prove that the absolute minimum of the energy corresponds to a flux value equal to the filling, i.e. the “commensurate flux phase” state is preferable. The magnetization of these fermions has a paramagnetic character of special orbital type.


2011 ◽  
Vol 88-89 ◽  
pp. 321-325
Author(s):  
Hai Feng Li ◽  
Wu Yun Qimuge ◽  
Xiao Lei Liu ◽  
Chao Lu Eerdun

Influences of Rashba spin-orbit interaction(SOI) effects on the ground state energy of the electron in quantum ring at zero fields are studied by means of the perturbation method. Numerical calculations for CdF2 ring are performed and the results show that the Rashba SOI makes the ground state energy of electron split into two branches, which are induced by the spin-up state and spin-down state, respectively. Two branches splitting energy increases oscillatorily with increasing the inner radius of quantum ring and decreases oscillatorily with increasing the outer radius of quantum ring. The largest Rashba spin splitting energies in the process of oscillation-increase and oscillation-decrease are 11.91meV and 13.97meV, respectively. These data and results are helpful to design and develop spin field effect transistor, spin light-emitting diode, spin resonant tunneling device, etc.


1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

Sign in / Sign up

Export Citation Format

Share Document