Finite-time synchronization of complex networks with non-identical nodes and impulsive disturbances

2018 ◽  
Vol 32 (01) ◽  
pp. 1850002 ◽  
Author(s):  
Wanli Zhang ◽  
Chuandong Li ◽  
Xing He ◽  
Hongfei Li

This paper investigates the finite-time synchronization of complex networks (CNs) with non-identical nodes and impulsive disturbances. By utilizing stability theories, new 1-norm-based analytical techniques and suitable comparison, systems, several sufficient conditions are obtained to realize the synchronization goal in finite time. State feedback controllers with and without the sign function are designed. Results show that the controllers with sign function can reduce the conservativeness of control gains and the controllers without sign function can overcome the chattering phenomenon. Numerical simulations are offered to verify the effectiveness of the theoretical analysis.

2018 ◽  
Vol 23 (4) ◽  
pp. 515-532
Author(s):  
Yujiao Liu ◽  
Xiaoxiao Wan ◽  
Enli Wu ◽  
Xinsong Yang ◽  
Fuad E. Alsaadi ◽  
...  

In this paper, finite-time synchronization of neural networks (NNs) with discontinuous activation functions (DAFs), Markovian switching, and proportional delays is studied in the framework of Filippov solution. Since proportional delay is unbounded and different from infinite-time distributed delay and classical finite-time analytical techniques are not applicable anymore, new 1-norm analytical techniques are developed. Controllers with and without the sign function are designed to overcome the effects of the uncertainties induced by Filippov solutions and further synchronize the considered NNs in a finite time. By designing new Lyapunov functionals and using M-matrix method, sufficient conditions are derived to guarantee that the considered NNs realize synchronization in a settling time without introducing any free parameters. It is shown that, though the proportional delay can be unbounded, complete synchronization can still be realized, and the settling time can be explicitly estimated. Moreover, it is discovered that controllers with sign function can reduce the control gains, while controllers without the sign function can overcome chattering phenomenon. Finally, numerical simulations are given to show the effectiveness of theoretical results.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Bin Yang ◽  
Xin Wang ◽  
Yongju Zhang ◽  
Yuhua Xu ◽  
Wuneng Zhou

This paper is mainly concerned with how nonlinear coupled one impacts synchronization dynamics of a class of nonlinear coupled Markovian switching multiweighted complex networks (NCMSMWCNs). Firstly, sufficient conditions of finite-time synchronization for a class of NCMSMWCNs and a class of linear coupled Markovian switching multiweighted complex networks (LCMSMWCNs) are investigated. Secondly, based on the derived results, how nonlinear coupled one affects synchronization dynamics of the NCMSMWCNs is analyzed from synchronization control rule. Thirdly, in order to further explore how nonlinear coupled one affects synchronization dynamics of the NCMSMWCNs, synchronization dynamics relationship of the NCMSMWCNs and the LCMSMWCNs is built. Furthermore, this relationship can also show how linear coupled one affects synchronization dynamics of the LCMSMWCNs. At last, numerical examples are provided to demonstrate the effectiveness of the obtained theory.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Ahmadjan Muhammadhaji ◽  
Abdujelil Abdurahman ◽  
Haijun Jiang

In this paper, we investigated the finite-time synchronization (FTS) problem for a class of time-delayed complex networks with nonidentical nodes onto any uniformly smooth state. By employing the finite-time stability theorem and designing two types of novel controllers, we obtained some simple sufficient conditions for the FTS of addressed complex networks. Furthermore, we also analyzed the effects of control variables on synchronization performance. Finally, we showed the effectiveness and feasibility of our methods by giving two numerical examples.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 779
Author(s):  
Tao Chen ◽  
Shiguo Peng ◽  
Zhenhua Zhang

In this paper, we investigate the finite-time synchronization problem for a class of Markovian jumping complex networks (MJCNs) with non-identical nodes and impulsive effects. Sufficient conditions for the MJCNs are presented based on an M-matrix technique, Lyapunov function method, stochastic analysis technique, and suitable comparison systems to guarantee finite-time synchronization. At last, numerical examples are exploited to illustrate our theoretical results, and they testify the effectiveness of our results for complex dynamic systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cong Zheng ◽  
Jinde Cao

This paper investigates finite-time synchronization of the singular hybrid coupled networks. The singular systems studied in this paper are assumed to be regular and impulse-free. Some sufficient conditions are derived to ensure finite-time synchronization of the singular hybrid coupled networks under a state feedback controller by using finite-time stability theory. A numerical example is finally exploited to show the effectiveness of the obtained results.


2021 ◽  
Vol 26 (4) ◽  
pp. 597-609
Author(s):  
Shuai Liu ◽  
Lingli Zhao ◽  
Wanli Zhang ◽  
Xinsong Yang ◽  
Fuad E. Alsaadi

In this paper, fast fixed-time (FDT) synchronization of T–S fuzzy (TSF) complex networks (CNs) is considered. The given control schemes can make the CNs synchronize with the given isolated system more fleetly than the most of existing results. By constructing comparison system and applying new analytical techniques, sufficient conditions are established to derive fast FDT synchronization speedily. In order to give some comparisons, FDT synchronization of the considered CNs is also presented by designing FDT fuzzy controller. Numerical examples are given to illustrate our new results.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xunwu Yin ◽  
Min Cao

The finite-time passivity problem is, respectively, investigated for stochastic coupled complex networks (SCCNs) with and without time-varying delay. Firstly, we present several new concepts about finite-time passivity in the sense of expectation on the basis of existing passivity definition. By designing appropriate controllers, the finite-time passivity of SCCNs with and without time-varying delay is obtained. In addition, the definition of finite-time synchronization in the sense of expectation is proposed. Under some sufficient conditions and designed controllers, finite-time passivity derives finite-time synchronization. Finally, two examples are given to demonstrate the effectiveness of finite-time passive and synchronization criteria.


2021 ◽  
Vol 40 (1) ◽  
pp. 1695-1712
Author(s):  
Kaifang Fei ◽  
Minghui Jiang ◽  
Yadan Zhang

In this paper, the matters of dissipativity and finite time synchronization for memristor-based neural networks (MNNs) with mixed time-varying discontinuities are investigated. Firstly, under the framework of extending Filippov differential inclusion theory, several effective new criteria are derived. Then, the global dissipativity of Filippov solution to neural networks is proved by using generalized Halanay inequality and matrix measure method. Secondly, some novel sufficient conditions are introduced to guarantee the finite-time synchronization of the drive-response MNNs based on a simple Lyapunov function and two different feedback controllers. Finally, several numerical examples are given to verify the validity of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wenhua Gao ◽  
Feiqi Deng ◽  
Ruiqiu Zhang ◽  
Wenhui Liu

This paper studies the problem of finite-timeH∞control for time-delayed Itô stochastic systems with Markovian switching. By using the appropriate Lyapunov-Krasovskii functional and free-weighting matrix techniques, some sufficient conditions of finite-time stability for time-delayed stochastic systems with Markovian switching are proposed. Based on constructing new Lyapunov-Krasovskii functional, the mode-dependent state feedback controller for the finite-timeH∞control is obtained. Simulation results illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document