Analysis of residual stress in welding parts of cryogenic materials for LNG storage tank

2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040030
Author(s):  
Chang Wook Park ◽  
Sung Won Yoon ◽  
Je Hyoung Cho ◽  
Yun Hae Kim

Research in LNG fueled ships are actively underway in the world. Accordingly, various materials were widely used as materials for storage tanks for ultra-low temperatures, and high manganese steel for ultra-low temperature was recently developed. In this paper, the transient thermal and residual stress analysis of the welding of 9% nickel steel and high manganese steel are presented. 9% nickel steel tended to have higher transverse direction stress and longitudinal direction stress than high manganese steel.

Author(s):  
Mauro Andres Cerra Florez ◽  
Jorge Luiz Cardoso ◽  
Hamilton Ferreira Gomes de Abreu ◽  
Walney Silva Araújo ◽  
Marcelo José Gomes da Silva

Abstract The present study aims to establish a comparison of corrosion resistance between four (non-commercial) high manganese steel models in relation to 9% nickel steel in an aqueous solution of H2SO4. High manganese steels have emerged as an alternative material for the manufacture of equipment for the storage and transportation of liquefied petroleum gas due to their mechanical properties and mainly for the lower cost compared to 9% nickel steel. The electrochemical techniques used were open circuit potential, linear polarization and electrochemical impedance spectroscopy. The results obtained by these techniques have helped to understand the phenomena that produce a lower corrosion resistance of high manganese steels when compared to 9% nickel steel in aqueous solutions.


Procedia CIRP ◽  
2018 ◽  
Vol 71 ◽  
pp. 227-231 ◽  
Author(s):  
Hongtang Chen ◽  
Shouren Wang ◽  
Sufen Lu ◽  
Yang Qiao ◽  
Xiangyu Wang ◽  
...  

Author(s):  
Jeong-Yeol Park ◽  
Myung-Hyun Kim

Recently, demands for liquefied natural gas (LNG) are increased by developing countries such as China, India and Middle East area. In addition, the International Maritime Organization (IMO) reinforced regulations to avoid the serious environmental pollution. This trend has led to manufacturing and operating various LNG vessels such as liquefied natural gas carrier (LNGC), floating liquefied natural gas (FLNG) and very large gas carrier (VLGC). In the design of LNG vessels, the structural integrity of LNG storage tank is of significant importance to satisfy the service conditions. In order to secure structural integrity, LNG storage tank is fabricated with low temperature materials. In general, low temperature materials such as SUS304L, Invar alloy, Al 5083-O, nickel alloy steel and high manganese steel exhibit excellent fatigue and fracture performances at cryogenic temperature. In particular, high manganese steel has attracted interest because they are potentially less expensive than the competing other low temperature materials. This study compares the fracture toughness and fatigue crack growth characteristics of high manganese steel with those of nickel steels. In addition, fracture toughness and fatigue crack growth rate tests for various nickel steels are conducted according to BS 7448 and ASTM E647, respectively. In order to obtain less conservative design values, the results of high manganese steel and various nickel steels were compared to those of BS7910. As a result, the CTOD value of high manganese steel is higher than that of 9% nickel steel at cryogenic temperature. In case of FCGR, the high manganese steel and 9% nickel steel are found to be similar to each other.


Author(s):  
Mauro Andres Cerra Florez ◽  
Jorge Luiz Cardoso ◽  
Hamilton Ferreira Gomes de Abreu ◽  
Walney Silva Araújo ◽  
Marcelo José Gomes da Silva

2021 ◽  
Vol 89 ◽  
pp. 122-132
Author(s):  
Pan Xie ◽  
Shucheng Shen ◽  
Cuilan Wu ◽  
Jiehua Li ◽  
Jianghua Chen

2019 ◽  
Vol 44 (13) ◽  
pp. 7000-7013 ◽  
Author(s):  
Young-Hyun Nam ◽  
Jong-Seo Park ◽  
Un-Bong Baek ◽  
Jin-Yoo Suh ◽  
Seung-Hoon Nahm

2019 ◽  
Vol 37 ◽  
pp. 375-379
Author(s):  
Ke Zhu ◽  
Zhengbing Xu ◽  
Siyong Zhao ◽  
Jianmin Zeng

Sign in / Sign up

Export Citation Format

Share Document