Periodic-wave solutions and asymptotic properties for a (3+1)-dimensional generalized breaking soliton equation in fluids and plasmas
In this paper, a (3+1)-dimensional generalized breaking soliton equation is investigated. Based on the one- and two-dimensional Riemann theta functions, one- and two-periodic-wave solutions are derived. We observe that the one-periodic wave is one-dimensional and is viewed as a superposition of the overlapping waves, placed one period apart. With certain parameters, the symmetric feature appears in the two-periodic wave, and the two-periodic wave degenerates to the one-periodic wave. With the series expansions, we explore the relations between the soliton and periodic-wave solutions. According to those relations, asymptotic properties for the periodic-wave solutions to approach to the soliton solutions under certain amplitude conditions are derived.