The critical values of coupling strength of the non-self-dual Ising lattices under decimation transformation

Author(s):  
Tuncer Kaya

In this work, the values of critical coupling strengths of the Ising lattices which are changing their lattice structure (or non-self-dual) under decimation transformations, such as the honeycomb, the triangular and the body centered cubic Ising lattices, are obtained by a modified real space renormalization group approach (RSRG). This modification is necessary to obtain a proper relation between the coupling strengths of the original and the decimated lattices. Indeed, we have achieved to obtain a proper renormalized coupling strength relation for honeycomb and triangular lattices readily, since the decimation transformation of the honeycomb lattice produces the triangular lattice or vice versa. Here, the problem of having physically untractable interactions between degrees of freedom in the renormalized Hamiltonian, which leads eventually to inevitable approximations in the treatment, except for the 1D Ising chain, has been solved with a proper approximation. Especially for the 3D Ising lattices, the physically untractable interactions appearing in the renormalized Hamiltonian make the mathematical treatment too cumbersome. As a result, there is not enough research dealing with the 3D Ising lattices using RG theory. Our approximation is based on using the simple relation [Formula: see text], which is, of course, a very relevant first-order approximation, if [Formula: see text]. With the help of this approximation, decimation transformation process produces only pairwise interactions in the renormalized Hamiltonian instead of having four spins, six spins, or even eight spin interactions which appear naturally if all the terms are kept in the renormalized Hamiltonians of the Ising lattices in 2D and higher dimensions. Without this approximation, one cannot apply analytic RG treatment feasibly to even simple cubic lattice, let alone applying it to the body centered cubic lattice. Using this modified RG approach, the values of critical coupling strengths of the honeycomb, the triangular and the body centered cubic Ising lattices are obtained analytically as [Formula: see text], [Formula: see text] and [Formula: see text] respectively. Apparently, these estimations are really close to the results obtained from cumbersome exact treatments which are [Formula: see text], [Formula: see text] and [Formula: see text] for the honeycomb, the triangular and the body centered cubic lattices.

2018 ◽  
Vol 32 (23) ◽  
pp. 1850252 ◽  
Author(s):  
Tuncer Kaya

Real Space Renormalization Group (RSRG) treatment of Ising model for square and simple cubic lattice is investigated and critical coupling strengths of these lattices are obtained. The mathematical complications, which appear inevitable in the decimated partition function due to Block-spin transformation, is treated with a relevant approximation. The approximation is based on the approximate equivalence of [Formula: see text] for small [Formula: see text], where K is the nearest neighbor coupling strength and [Formula: see text] is the nearest neighbor spins degrees of freedom around a central spin. The values of the critical coupling strengths are obtained as 0.4830 for square lattice and 0.2225 for simple cubic (SC) lattice. The corresponding critical exponents values [Formula: see text] and [Formula: see text] are also calculated within very acceptable agreement with those values obtained from numerical works.


2009 ◽  
Vol 18 (08) ◽  
pp. 1159-1173 ◽  
Author(s):  
CASEY MANN ◽  
JENNIFER MCLOUD-MANN ◽  
RAMONA RANALLI ◽  
NATHAN SMITH ◽  
BENJAMIN MCCARTY

This article concerns the minimal knotting number for several types of lattices, including the face-centered cubic lattice (fcc), two variations of the body-centered cubic lattice (bcc-14 and bcc-8), and simple-hexagonal lattices (sh). We find, through the use of a computer algorithm, that the minimal knotting number in sh is 20, in fcc is 15, in bcc-14 is 13, and bcc-8 is 18.


2018 ◽  
Vol 32 (32) ◽  
pp. 1850390
Author(s):  
Minos A. Neto ◽  
J. Roberto Viana ◽  
Octavio D. R. Salmon ◽  
E. Bublitz Filho ◽  
José Ricardo de Sousa

The critical frontier of the isotropic antiferromagnetic Heisenberg model in a magnetic field along the z-axis has been studied by mean-field and effective-field renormalization group calculations. These methods, abbreviated as MFRG and EFRG, are based on the comparison of two clusters of different sizes, each of them trying to mimic a specific Bravais lattice. The frontier line in the plane of temperature versus magnetic field was obtained for the simple cubic and the body-centered cubic lattices. Spin clusters with sizes N = 1, 2, 4 were used so as to implement MFRG-12, EFRG-12 and EFRG-24 numerical equations. For the simple cubic lattice, the MFRG frontier exhibits a notorious re-entrant behavior. This problem is improved by the EFRG technique. However, both methods agree at lower fields. For the body-centered cubic lattice, the MFRG method did not work. As in the cubic lattice, all the EFRG results agree at lower fields. Nevertheless, the EFRG-12 approach gave no solution for very low temperatures. Comparisons with other methods have been discussed.


2007 ◽  
Vol 19 (11) ◽  
pp. 3011-3050 ◽  
Author(s):  
Andreas Kaltenbrunner ◽  
Vicenç Gómez ◽  
Vicente López

An ensemble of stochastic nonleaky integrate-and-fire neurons with global, delayed, and excitatory coupling and a small refractory period is analyzed. Simulations with adiabatic changes of the coupling strength indicate the presence of a phase transition accompanied by a hysteresis around a critical coupling strength. Below the critical coupling production of spikes in the ensemble is governed by the stochastic dynamics, whereas for coupling greater than the critical value, the stochastic dynamics loses its influence and the units organize into several clusters with self-sustained activity. All units within one cluster spike in unison, and the clusters themselves are phase-locked. Theoretical analysis leads to upper and lower bounds for the average interspike interval of the ensemble valid for all possible coupling strengths. The bounds allow calculating the limit behavior for large ensembles and characterize the phase transition analytically. These results may be extensible to pulse-coupled oscillators.


1959 ◽  
Vol 37 (3) ◽  
pp. 350-361 ◽  
Author(s):  
D. D. Betts

The various sets of basis functions useful in discussing cubic crystals must include sets of symmetrized combinations of powers of the co-ordinates ortho-gonalized over the cellular polyhedron. Such polynomials are here called solid harmonics. A study of the actual solid harmonics reveals the limitations of the spherical cell approximation. The solid harmonics can be used to develop a new method over the cellular polyhedron of the body-centered cubic lattice or of the face-centered cubic lattice.


Sign in / Sign up

Export Citation Format

Share Document